11,111 research outputs found

    A Cost-Effective Critical Path Approach for Service Priority Optimization in the Grid Computing Economy

    Get PDF
    The advancement in the utilization and technologies of the Internet has led to the rapid growth of grid computing; and the perpetuating demand for grid computing resources calls for an incentive-compatible solution to the imminent QoS problem. This paper examines the optimal service priority selection problem that a grid computing network user will confront. We model grid services for a multi-subtask request as a prioritized PERT graph and prove that the localized conditional critical path, which is based on the cost-minimizing priority selection for each node, sets the lower bound for the length of cost-effective critical path that commits the optimal solution. We also propose a heuristic algorithm for relaxing the nodes on the noncritical paths with respect to a given critical path.link_to_subscribed_fulltex

    Cost-Efficient Scheduling for Deadline Constrained Grid Workflows

    Get PDF
    Cost optimization for workflow scheduling while meeting deadline is one of the fundamental problems in utility computing. In this paper, a two-phase cost-efficient scheduling algorithm called critical chain is presented. The proposed algorithm uses the concept of slack time in both phases. The first phase is deadline distribution over all tasks existing in the workflow which is done considering critical path properties of workflow graphs. Critical chain uses slack time to iteratively select most critical sequence of tasks and then assigns sub-deadlines to those tasks. In the second phase named mapping step, it tries to allocate a server to each task considering task's sub-deadline. In the mapping step, slack time priority in selecting ready task is used to reduce deadline violation. Furthermore, the algorithm tries to locally optimize the computation and communication costs of sequential tasks exploiting dynamic programming. After proposing the scheduling algorithm, three measures for the superiority of a scheduling algorithm are introduced, and the proposed algorithm is compared with other existing algorithms considering the measures. Results obtained from simulating various systems show that the proposed algorithm outperforms four well-known existing workflow scheduling algorithms

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Idle block based methods for cloud workflow scheduling with preemptive and non-preemptive tasks

    Full text link
    [EN] Complex workflow applications are widely used in scientific computing and economic analysis, which commonly include both preemptive and non-preemptive tasks. Cloud computing provides a convenient way for users to access different resources based on the ¿pay-as-you-go¿ model. However, different resource renting alternatives (reserved, on-demand or spot) are usually provided by the service provider. The spot instances provide a dynamic and cheaper alternative comparing to the on-demand one. However, failures often occur due to the fluctuations of the price of the instance. It is a big challenge to determine the appropriate amount of spot and on-demand resources for workflow applications with both preemptive and non-preemptive tasks. In this paper, the workflow scheduling problem with both spot and on-demand instances is considered. The objective is to minimize the total renting cost under deadline constrains. An idle time block-based method is proposed for the considered problem. Different idle time block-based searing and improving strategies are developed to construct schedules for workflow applications. Schedules are improved by a forward and backward moving mechanism. Experimental and statistical results demonstrate the effectiveness of the proposed algorithm over a lot of tests with different sizes.This work is supported by the National Natural Science Foundation of China (No. 61572127, 61272377), the National Key Research and Development Program of China (No. 2017YFB1400800). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) financed by FEDER funds.Chen, L.; Li, X.; Ruiz García, R. (2018). Idle block based methods for cloud workflow scheduling with preemptive and non-preemptive tasks. Future Generation Computer Systems. 89:659-669. https://doi.org/10.1016/j.future.2018.07.037S6596698

    Cloud Workflow Scheduling with Deadlines and Time Slot Availability

    Full text link
    [EN] Allocating service capacities in cloud computing is based on the assumption that they are unlimited and can be used at any time. However, available service capacities change with workload and cannot satisfy users' requests at any time from the cloud provider's perspective because cloud services can be shared by multiple tasks. Cloud service providers provide available time slots for new user's requests based on available capacities. In this paper, we consider workflow scheduling with deadline and time slot availability in cloud computing. An iterated heuristic framework is presented for the problem under study which mainly consists of initial solution construction, improvement, and perturbation. Three initial solution construction strategies, two greedy-and fair-based improvement strategies and a perturbation strategy are proposed. Different strategies in the three phases result in several heuristics. Experimental results show that different initial solution and improvement strategies have different effects on solution qualities.This work has been supported by the National Natural Science Foundation of China (Nos. 61572127, 61272377) and the Key Research & Development Program in Jiangsu Province (No. BE2015728). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "RESULT - Realistic Extended Scheduling Using Light Techniques" (No. DPI2012-36243-C02-01) partially financed with FEDER funds.Li, X.; Qian, L.; Ruiz García, R. (2018). Cloud Workflow Scheduling with Deadlines and Time Slot Availability. IEEE Transactions on Services Computing. 11(2):329-340. https://doi.org/10.1109/TSC.2016.2518187S32934011

    Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The safety, mobility, environmental and economic benefits of Connected and Autonomous Vehicles (CAVs) are potentially dramatic. However, realization of these benefits largely hinges on the timely upgrading of the existing transportation system. CAVs must be enabled to send and receive data to and from other vehicles and drivers (V2V communication) and to and from infrastructure (V2I communication). Further, infrastructure and the transportation agencies that manage it must be able to collect, process, distribute and archive these data quickly, reliably, and securely. This paper focuses on current digital roadway infrastructure initiatives and highlights the importance of including digital infrastructure investment alongside more traditional infrastructure investment to keep up with the auto industry's push towards this real time communication and data processing capability. Agencies responsible for transportation infrastructure construction and management must collaborate, establishing national and international platforms to guide the planning, deployment and management of digital infrastructure in their jurisdictions. This will help create standardized interoperable national and international systems so that CAV technology is not deployed in a haphazard and uncoordinated manner

    Frontiers In Operations Research For Overcoming Barriers To Vehicle Electrification

    Get PDF
    Electric vehicles (EVs) hold many promises including diversification of the transportation energy feedstock and reduction of greenhouse gas and other emissions. However, achieving large-scale adoption of EVs presents a number of challenges resulting from a current lack of supporting infrastructure and difficulties in overcoming technological barriers. This dissertation addresses some of these challenges by contributing to the advancement of theories in the areas of network optimization and mechanism design. To increase the electric driving range of plug-in hybrid electric vehicles (PHEVs), we propose a powertrain energy management control system that exploits energy efficiency dif- ferences of the electric machine and the internal combustion engine during route planning. We introduce the Energy-Efficient Routing problem (EERP) for PHEVs, and formulate this problem as a new class of the shortest path problem. We prove that the EERP is NP-complete. We then propose two exact algorithms that find optimal solutions by exploiting the transitive structure inherent in the network. To tackle the intractability of the problem, we proposed a Fully Polynomial Time Approximation Scheme (FPTAS). From a theoretic perspective, the proposed two-phase approaches improve the state-of-the-art to optimally solving shortest path problems on general constrained multi-graph networks. These novel approaches are scalable and offer broad potential in many network optimization problems. In the context of vehicle routing, this is the first study to take into account energy efficiency difference of different operating modes of PHEVs during route planning, which is a high level powertrain energy management procedure. Another challenge for EV adoption is the inefficiency of current charging systems. In addition, high electricity consumption rates of EVs during charging make the load manage- ment of micro grids a challenge. We proposed an offline optimal mechanism for scheduling and pricing of electric vehicle charging considering incentives of both EV owners and utility companies. In the offline setting, information about future supply and demand is known to the scheduler. By considering uncertainty about future demand, we then designed a family of online mechanisms for real-time scheduling of EV charging. A fundamental problem with significant economic implications is how to price the charging units at different times under dynamic demand. We propose novel bidding based mechanisms for online scheduling and pricing of electric vehicle charging. The proposed preemption-aware charging mechanisms consider incentives of both EV drivers and grid operators. We also prove incentive-compatibility of the mechanisms, that is, truthful reporting is a dominant strategy for self-interested EV drivers. The proposed mechanisms demonstrate the benefits of electric grid load management, revenue maximization, and quick response, key attributes when providing online charging services
    corecore