21,465 research outputs found

    Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications

    Full text link
    We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks. The main contribution is a procedural world modeling approach enabling high variability coupled with physically accurate image synthesis, and is a departure from the hand-modeled virtual worlds and approximate image synthesis methods used in real-time applications. The benefits of our approach include flexible, physically accurate and scalable image synthesis, implicit wide coverage of classes and features, and complete data introspection for annotations, which all contribute to quality and cost efficiency. To evaluate our approach and the efficacy of the resulting data, we use semantic segmentation for autonomous vehicles and robotic navigation as the main application, and we train multiple deep learning architectures using synthetic data with and without fine tuning on organic (i.e. real-world) data. The evaluation shows that our approach improves the neural network's performance and that even modest implementation efforts produce state-of-the-art results.Comment: The project web page at http://vcl.itn.liu.se/publications/2017/TKWU17/ contains a version of the paper with high-resolution images as well as additional materia

    Assessing context-based learning: Not only rigorous but also relevant

    Get PDF
    Economic factors are driving significant change in higher education. There is increasing responsiveness to market demand for vocational courses and a growing appreciation of the importance of procedural (tacit) knowledge to service the needs of the Knowledge Economy; the skills in demand are information analysis, collaborative working and 'just-in-time learning'. New pedagogical methods go some way to accommodate these skills, situating learning in context and employing information and communications technology to present realistic simulations and facilitate collaborative exchange. However, what have so far proved resistant to change are the practices of assessment. This paper endorses the case for a scholarship of assessment and proposes the development of technology-supported tools and techniques to assess context-based learning. It also recommends a fundamental rethink of the norm-referenced and summative assessment of propositional knowledge as the principal criterion for student success in universities

    Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

    Full text link
    Selective weeding is one of the key challenges in the field of agriculture robotics. To accomplish this task, a farm robot should be able to accurately detect plants and to distinguish them between crop and weeds. Most of the promising state-of-the-art approaches make use of appearance-based models trained on large annotated datasets. Unfortunately, creating large agricultural datasets with pixel-level annotations is an extremely time consuming task, actually penalizing the usage of data-driven techniques. In this paper, we face this problem by proposing a novel and effective approach that aims to dramatically minimize the human intervention needed to train the detection and classification algorithms. The idea is to procedurally generate large synthetic training datasets randomizing the key features of the target environment (i.e., crop and weed species, type of soil, light conditions). More specifically, by tuning these model parameters, and exploiting a few real-world textures, it is possible to render a large amount of realistic views of an artificial agricultural scenario with no effort. The generated data can be directly used to train the model or to supplement real-world images. We validate the proposed methodology by using as testbed a modern deep learning based image segmentation architecture. We compare the classification results obtained using both real and synthetic images as training data. The reported results confirm the effectiveness and the potentiality of our approach.Comment: To appear in IEEE/RSJ IROS 201

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Tabletop prototyping of serious games for ‘soft skills’ training

    Get PDF
    Serious games offer a relatively low cost, highly engaging alternative to traditional forms of soft skills training. The current paper describes an approach taken to designing a serious game for the training of soft skills. A tabletop prototype of the game was created and evaluated with a group of 24 participants. Initial findings suggest that the game successfully created an environment in which it was advantageous to engage in appropriate collaborative decision making behaviors, as well as providing built-in opportunities for a tutor to guide under-performing groups

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    Technology Solutions for Developmental Math: An Overview of Current and Emerging Practices

    Get PDF
    Reviews current practices in and strategies for incorporating innovative technology into the teaching of remedial math at the college level. Outlines challenges, emerging trends, and ways to combine technology with new concepts of instructional strategy
    corecore