2,633 research outputs found

    A Data Transformation System for Biological Data Sources

    Get PDF
    Scientific data of importance to biologists in the Human Genome Project resides not only in conventional databases, but in structured files maintained in a number of different formats (e.g. ASN.1 and ACE) as well a.s sequence analysis packages (e.g. BLAST and FASTA). These formats and packages contain a number of data types not found in conventional databases, such as lists and variants, and may be deeply nested. We present in this paper techniques for querying and transforming such data, and illustrate their use in a prototype system developed in conjunction with the Human Genome Center for Chromosome 22. We also describe optimizations performed by the system, a crucial issue for bulk data

    Cycle time optimization by timing driven placement with simultaneous netlist transformations

    Get PDF
    We present new concepts to integrate logic synthesis and physical design. Our methodology uses general Boolean transformations as known from technology-independent synthesis, and a recursive bi-partitioning placement algorithm. In each partitioning step, the precision of the layout data increases. This allows effective guidance of the logic synthesis operations for cycle time optimization. An additional advantage of our approach is that no complicated layout corrections are needed when the netlist is changed

    From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

    Full text link
    Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization is based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.Comment: 18 pages, 4 figures, accepted for publication in Scientific Programmin

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Vertical Optimizations of Convolutional Neural Networks for Embedded Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore