24,690 research outputs found

    Parallelism in declarative languages

    Get PDF
    Imperative programming languages were initially built for uniprocessor systems that evolved out of the Von Neumann machine model. This model of storage oriented computation blocks parallelism and increases the cost of parallel program development and porting. Declarative languages based on mathematical models of computation, seem more suitable for the development of parallel programs. In the first part of this thesis we examine different language families under the declarative paradigm: functional, logic, and constraint languages. Functional languages are based on the abstract model of functions and (lamda)-calculus. They were initially developed for symbolic computation, but today they are commonly used in numerical analysis and many other application areas. Pure lisp is a widely known member of this class. Logic languages are based on first order predicate calculus. Although they were initially developed for theorem proving, fifth generation operating systems are written in them. Most logic languages are descendants or distant relatives of Prolog. Constraint languages are related to logic languages. In a constraint language you define a program object by placing constraints on its structure and its behavior. They were initially used in graphics applications, but today researchers work on using them in parallel computation. Here we will compare and contrast the language classes above, locate advantages and deficiencies, and explain different choices made by language implementors. In the second part of thesis we describe a front end for the CONSUL, a prototype constraint language for programming multiprocessors. The most important features of the front end are compact representation of constraints, type definitions, functional use of relations, and the ability to split programs into multiple files

    Service discovery and negotiation with COWS

    Get PDF
    To provide formal foundations to current (web) services technologies, we put forward using COWS, a process calculus for specifying, combining and analysing services, as a uniform formalism for modelling all the relevant phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, deployment and execution. In this paper, we show that constraints and operations on them can be smoothly incorporated in COWS, and propose a disciplined way to model multisets of constraints and to manipulate them through appropriate interaction protocols. Therefore, we demonstrate that also QoS requirement specifications and SLA achievements, and the phases of dynamic service discovery and negotiation can be comfortably modelled in COWS. We illustrate our approach through a scenario for a service-based web hosting provider

    An Invariant Cost Model for the Lambda Calculus

    Full text link
    We define a new cost model for the call-by-value lambda-calculus satisfying the invariance thesis. That is, under the proposed cost model, Turing machines and the call-by-value lambda-calculus can simulate each other within a polynomial time overhead. The model only relies on combinatorial properties of usual beta-reduction, without any reference to a specific machine or evaluator. In particular, the cost of a single beta reduction is proportional to the difference between the size of the redex and the size of the reduct. In this way, the total cost of normalizing a lambda term will take into account the size of all intermediate results (as well as the number of steps to normal form).Comment: 19 page

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    (Leftmost-Outermost) Beta Reduction is Invariant, Indeed

    Get PDF
    Slot and van Emde Boas' weak invariance thesis states that reasonable machines can simulate each other within a polynomially overhead in time. Is lambda-calculus a reasonable machine? Is there a way to measure the computational complexity of a lambda-term? This paper presents the first complete positive answer to this long-standing problem. Moreover, our answer is completely machine-independent and based over a standard notion in the theory of lambda-calculus: the length of a leftmost-outermost derivation to normal form is an invariant cost model. Such a theorem cannot be proved by directly relating lambda-calculus with Turing machines or random access machines, because of the size explosion problem: there are terms that in a linear number of steps produce an exponentially long output. The first step towards the solution is to shift to a notion of evaluation for which the length and the size of the output are linearly related. This is done by adopting the linear substitution calculus (LSC), a calculus of explicit substitutions modeled after linear logic proof nets and admitting a decomposition of leftmost-outermost derivations with the desired property. Thus, the LSC is invariant with respect to, say, random access machines. The second step is to show that LSC is invariant with respect to the lambda-calculus. The size explosion problem seems to imply that this is not possible: having the same notions of normal form, evaluation in the LSC is exponentially longer than in the lambda-calculus. We solve such an impasse by introducing a new form of shared normal form and shared reduction, deemed useful. Useful evaluation avoids those steps that only unshare the output without contributing to beta-redexes, i.e. the steps that cause the blow-up in size. The main technical contribution of the paper is indeed the definition of useful reductions and the thorough analysis of their properties.Comment: arXiv admin note: substantial text overlap with arXiv:1405.331

    Finite difference methods fengshui: alignment through a mathematics of arrays

    Get PDF
    Numerous scientific-computational domains make use of array data. The core computing of the numerical methods and the algorithms involved is related to multi-dimensional array manipulation. Memory layout and the access patterns of that data are crucial to the optimal performance of the array-based computations. As we move towards exascale computing, writing portable code for efficient data parallel computations is increasingly requiring an abstract productive working environment. To that end, we present the design of a framework for optimizing scientific array-based computations, building a case study for a Partial Differential Equations solver. By embedding the Mathematics of Arrays formalism in the Magnolia programming language, we assemble a software stack capable of abstracting the continuous high-level application layer from the discrete formulation of the collective array-based numerical methods and algorithms and the final detailed low-level code. The case study lays the groundwork for achieving optimized memory layout and efficient computations while preserving a stable abstraction layer independent of underlying algorithms and changes in the architecture.Peer ReviewedPostprint (author's final draft

    Specifying and Analysing SOC Applications with COWS

    Get PDF
    COWS is a recently defined process calculus for specifying and combining service-oriented applications, while modelling their dynamic behaviour. Since its introduction, a number of methods and tools have been devised to analyse COWS specifications, like e.g. a type system to check confidentiality properties, a logic and a model checker to express and check functional properties of services. In this paper, by means of a case study in the area of automotive systems, we demonstrate that COWS, with some mild linguistic additions, can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We also provide a flavour of the properties that can be analysed by using the tools mentioned above
    corecore