11,820 research outputs found

    The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817

    Get PDF
    The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be ∼\sim10" from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift (zhelio=0.009783±0.000023z_{\rm helio}=0.009783\pm0.000023) we infer the systemic recession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be vCMB=3231±53v_{\rm CMB}=3231 \pm 53 km s−1^{-1}. Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be vpec=307±230v_{\rm pec}=307 \pm 230 km s−1^{-1}, resulting in a cosmic velocity of vcosmic=2924±236v_{\rm cosmic}=2924 \pm 236 km s−1^{-1} (zcosmic=0.00980±0.00079z_{\rm cosmic}=0.00980\pm 0.00079) and a distance of Dz=40.4±3.4D_z=40.4\pm 3.4 Mpc assuming a local Hubble constant of H0=73.24±1.74H_0=73.24\pm 1.74 km s−1^{-1} Mpc−1^{-1}. (2) Using Hubble Space Telescope measurements of the effective radius (15.5" ±\pm 1.5") and contained intensity and MUSE/VLT measurements of the velocity dispersion, we place NGC 4993 on the Fundamental Plane (FP) of E and S0 galaxies. Comparing to a frame of 10 clusters containing 226 galaxies, this yields a distance estimate of DFP=44.0±7.5D_{\rm FP}=44.0\pm 7.5 Mpc. The combined redshift and FP distance is DNGC4993=41.0±3.1D_{\rm NGC 4993}= 41.0\pm 3.1 Mpc. This 'electromagnetic' distance estimate is consistent with the independent measurement of the distance to GW170817 as obtained from the gravitational-wave signal (DGW=43.8−6.9+2.9D_{\rm GW}= 43.8^{+2.9}_{-6.9} Mpc) and confirms that GW170817 occurred in NGC 4993.Comment: 9 pages, 5 figure

    Prospects for Observing the low-density Cosmic Web in Lyman-alpha Emission

    Full text link
    Mapping the intergalactic medium (IGM) in Lyman-α\alpha emission would yield unprecedented tomographic information on the large-scale distribution of baryons and potentially provide new constraints on the UV background and various feedback processes relevant to galaxy formation. Here, we use a cosmological hydrodynamical simulation to examine the Lyman-α\alpha emission of the IGM due to collisional excitations and recombinations in the presence of a UV background. We focus on gas in large-scale-structure filaments in which Lyman-α\alpha radiative transfer effects are expected to be moderate. At low density the emission is primarily due to fluorescent re-emission of the ionising UV background due to recombinations, while collisional excitations dominate at higher densities. We discuss prospects of current and future observational facilities to detect this emission and find that the emission of filaments of the cosmic web will typically be dominated by the halos and galaxies embedded in them, rather than by the lower density filament gas outside halos. Detecting filament gas directly would require a very long exposure with a MUSE-like instrument on the ELT. Our most robust predictions that act as lower limits indicate this would be slightly less challenging at lower redshifts (z≲4z \lesssim 4). We also find that there is a large amount of variance between fields in our mock observations. High-redshift protoclusters appear to be the most promising environment to observe the filamentary IGM in Lyman-α\alpha emission.Comment: 20 pages, 13 figures. Accepted for publication in Astronomy & Astrophysics. Accepted version contains several revisions following suggestions made in the review proces

    Lyman-\alpha{} Emitters in the context of hierarchical galaxy formation: predictions for VLT/MUSE surveys

    Full text link
    The VLT Multi Unit Spectroscopic Explorer (MUSE) integral-field spectrograph can detect Ly\alpha{} emitters (LAE) in the redshift range 2.8≲z≲6.72.8 \lesssim z \lesssim 6.7 in a homogeneous way. Ongoing MUSE surveys will notably probe faint Ly\alpha{} sources that are usually missed by current narrow-band surveys. We provide quantitative predictions for a typical wedding-cake observing strategy with MUSE based on mock catalogs generated with a semi-analytic model of galaxy formation coupled to numerical Ly\alpha{} radiation transfer models in gas outflows. We expect ≈\approx 1500 bright LAEs (FLyαF_{Ly\alpha} ≳\gtrsim 10−1710^{-17} erg s−1^{-1} cm−2^{-2}) in a typical Shallow Field (SF) survey carried over ≈\approx 100 arcmin2^2, and ≈\approx 2,000 sources as faint as 10−1810^{-18} erg s−1^{-1} cm−2^{-2} in a Medium-Deep Field (MDF) survey over 10 arcmin2^2. In a typical Deep Field (DF) survey of 1 arcmin2^2, we predict that ≈\approx 500 extremely faint LAEs (FLyαF_{Ly\alpha} ≳\gtrsim 4×10−194 \times 10^{-19} erg s−1^{-1} cm−2^{-2}) will be found. Our results suggest that faint Ly\alpha{} sources contribute significantly to the cosmic Ly\alpha{} luminosity and SFR budget. While the host halos of bright LAEs at z ≈\approx 3 and 6 have descendants with median masses of 2×10122 \times 10^{12} and 5×10135 \times 10^{13} M⊙M_{\odot} respectively, the faintest sources detectable by MUSE at these redshifts are predicted to reside in halos which evolve into typical sub-L∗L^{*} and L∗L^{*} galaxy halos at z = 0. We expect typical DF and MDF surveys to uncover the building blocks of Milky Way-like objects, even probing the bulk of the stellar mass content of LAEs located in their progenitor halos at z ≈\approx 3.Comment: 18 pages, 13 figures, accepted for publication in MNRA

    The Cosmic Ultraviolet Baryon Survey (CUBS) I. Overview and the diverse environments of Lyman limit systems at z<1

    Full text link
    We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z<~1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman Limit Systems (LLSs) at zabs~ 17.2 over a total redshift survey pathlength of dz=9.3, and a number density of n(z)=0.43 (-0.18, +0.26). Considering all absorbers with log N(HI)/cm^-2 > 16.5 leads to n(z)=1.08 (-0.25, +0.31) at z<1. All LLSs exhibit a multi-component structure and associated metal transitions from multiple ionization states such as CII, CIII, MgII, SiII, SiIII, and OVI absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than 0.1L* at d<~300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disk, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d=15 to 72 pkpc and intrinsic luminosities from ~0.01L* to ~3L*. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities.Comment: 26 pages, 14 figures, MNRAS in pres

    Strongly Time-Variable Ultra-Violet Metal Line Emission from the Circum-Galactic Medium of High-Redshift Galaxies

    Get PDF
    We use cosmological simulations from the Feedback In Realistic Environments (FIRE) project, which implement a comprehensive set of stellar feedback processes, to study ultra-violet (UV) metal line emission from the circum-galactic medium of high-redshift (z=2-4) galaxies. Our simulations cover the halo mass range Mh ~ 2x10^11 - 8.5x10^12 Msun at z=2, representative of Lyman break galaxies. Of the transitions we analyze, the low-ionization C III (977 A) and Si III (1207 A) emission lines are the most luminous, with C IV (1548 A) and Si IV (1394 A) also showing interesting spatially-extended structures. The more massive halos are on average more UV-luminous. The UV metal line emission from galactic halos in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ~2 dex. The peaks of UV metal line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic halos to power the metal line emission. The strong time variability implies that even some relatively low-mass halos may be detectable. Conversely, flux-limited samples will be biased toward halos whose central galaxy has recently experienced a strong burst of star formation. Spatially-extended UV metal line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web Imager (KCWI).Comment: 16 pages, 8 figures, accepted for publication in MNRA

    The MURALES survey II. Presentation of MUSE observations of 20 3C low-z radio galaxies and first results

    Get PDF
    We present observations of a complete sub-sample of 20 radio galaxies from the Third Cambridge Catalog (3C) with redshift <0.3 obtained from VLT/MUSE optical integral field spectrograph. These data have been obtained as part of the survey MURALES (a MUse RAdio Loud Emission line Snapshot survey) with the main goal of exploring the Active Galactic Nuclei (AGN) feedback process in a sizeable sample of the most powerful radio sources at low redshift. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to their unprecedented depth (the median 3 sigma surface brightness limit in the emission line maps is 6X10^-18 erg s-1 cm-2 arcsec-2, these observations reveal emission line structures extending to several tens of kiloparsec in most objects. In nine sources the gas velocity shows ordered rotation, but in the other cases it is highly complex. 3C sources show a connection between radio morphology and emission line properties. Whereas, in three of the four Fanaroff and Riley Class I radio galaxies (FRIs), the line emission regions are compact, ~1 kpc in size; in all but one of the Class II radiogalaxies FRIIs, we detected large scale structures of ionized gas with a median extent of 17 kpc. Among the FRIIs, those of high and low excitation show extended gas structures with similar morphological properties, suggesting that they both inhabit regions characterized by a rich gaseous environment on kpc scale.Comment: Accepted for publication in A&

    Ubiquitous giant Ly α\alpha nebulae around the brightest quasars at z∼3.5z\sim3.5 revealed with MUSE

    Get PDF
    Direct Ly α\alpha imaging of intergalactic gas at z∼2z\sim2 has recently revealed giant cosmological structures around quasars, e.g. the Slug Nebula (Cantalupo et al. 2014). Despite their high luminosity, the detection rate of such systems in narrow-band and spectroscopic surveys is less than 10%, possibly encoding crucial information on the distribution of gas around quasars and the quasar emission properties. In this study, we use the MUSE integral-field instrument to perform a blind survey for giant Ly α\alpha nebulae around 17 bright radio-quiet quasars at 3<z<43<z<4 that does not suffer from most of the limitations of previous surveys. After data reduction and analysis performed with specifically developed tools, we found that each quasar is surrounded by giant Ly α\alpha nebulae with projected sizes larger than 100 physical kpc and, in some cases, extending up to 320 kpc. The circularly averaged surface brightness profiles of the nebulae appear very similar to each other despite their different morphologies and are consistent with power laws with slopes ≈−1.8\approx-1.8. The similarity between the properties of all these nebulae and the Slug Nebula suggests a similar origin for all systems and that a large fraction of gas around bright quasars could be in a relatively "cold" (T∼\sim104^4K) and dense phase. In addition, our results imply that such gas is ubiquitous within at least 50 kpc from bright quasars at 3<z<43<z<4 independently of the quasar emission opening angle, or extending up to 200 kpc for quasar isotropic emission.Comment: 19 pages, 9 figures, 3 Tables, accepted to Ap

    GASP. XVI. Does cosmic web enhancement turn on star formation in galaxies?

    Get PDF
    Galaxy filaments are a peculiar environment, and their impact on the galaxy properties is still controversial. Exploiting the data from the GAs Stripping Phenomena in galaxies with MUSE (GASP), we provide the first characterisation of the spatially resolved properties of galaxies embedded in filaments in the local Universe. The four galaxies we focus on show peculiar ionised gas distributions: Halpha clouds have been observed beyond four times the effective radius. The gas kinematics, metallicity map and the ratios of emission line fluxes confirm that they do belong to the galaxy gas disk, the analysis of their spectra shows that very weak stellar continuum is associated to them. Similarly, the star formation history and luminosity weighted age maps point to a recent formation of such clouds. The clouds are powered by star formation, and are characterised by intermediate values of dust absorption. We hypothesise a scenario in which the observed features are due to "Cosmic Web Enhancement": we are most likely witnessing galaxies passing through or flowing within filaments that assist the gas cooling and increase the extent of the star formation in the densest regions in the circumgalactic gas. Targeted simulations are mandatory to better understand this phenomenon.Comment: MNRAS in press, 18 pages, 12 figure
    • …
    corecore