1,919 research outputs found

    Vision-based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

    Get PDF
    The paper focuses on the problem of vision-based obstacle detection and tracking for unmanned aerial vehicle navigation. A real-time object localization and tracking strategy from monocular image sequences is developed by effectively integrating the object detection and tracking into a dynamic Kalman model. At the detection stage, the object of interest is automatically detected and localized from a saliency map computed via the image background connectivity cue at each frame; at the tracking stage, a Kalman filter is employed to provide a coarse prediction of the object state, which is further refined via a local detector incorporating the saliency map and the temporal information between two consecutive frames. Compared to existing methods, the proposed approach does not require any manual initialization for tracking, runs much faster than the state-of-the-art trackers of its kind, and achieves competitive tracking performance on a large number of image sequences. Extensive experiments demonstrate the effectiveness and superior performance of the proposed approach.Comment: 8 pages, 7 figure

    Multi-Channel Features Spatio-Temporal Context Learning for Visual Tracking

    Get PDF
    Visual tracking is a challenging issue in surveillance, human-computer interaction and intelligent robotics, among others. Managing appearance changes of the target object, illumination changes, rotations, non-rigid deformations, partial or full occlusions, background clutter, fast motion, and so forth is generally difficult. Among the numerous existing trackers, the correlationfilter- based tracker can achieve appealing performance with a fast speed for fast Fourier transform (FFT). Motivated by this property, the spatio-temporal context (STC) learning algorithm was proposed with consideration of the information from the context around the target, and this algorithm achieved good results. However, STC only utilizes the overall intensity information. In this paper, we propose a multi-channel features spatio-temporal context (MFSTC) learning algorithm with an improved scaleadaptive scheme. Our algorithm integrates powerful features, including Histogram of Oriented Gradients (HoG) and color naming, using kernel methods on the basis of the STC algorithm to further enhance the overall tracking performance. Extensive experimental results obtained from various benchmark datasets demonstrate that the proposed tracker is promising for various challenging scenarios and maintains real-time performance at an average speed of 78 fps. According to the test results, our algorithm outperforms the STC algorithm and achieves performance that is competitive with the state-of-the-art algorithms

    Model Decay in Long-Term Tracking

    Get PDF
    • …
    corecore