2,282 research outputs found

    Hybrid Ventilation System and Soft-Sensors for Maintaining Indoor Air Quality and Thermal Comfort in Buildings

    Get PDF
    Maintaining both indoor air quality (IAQ) and thermal comfort in buildings along with optimized energy consumption is a challenging problem. This investigation presents a novel design for hybrid ventilation system enabled by predictive control and soft-sensors to achieve both IAQ and thermal comfort by combining predictive control with demand controlled ventilation (DCV). First, we show that the problem of maintaining IAQ, thermal comfort and optimal energy is a multi-objective optimization problem with competing objectives, and a predictive control approach is required to smartly control the system. This leads to many implementation challenges which are addressed by designing a hybrid ventilation scheme supported by predictive control and soft-sensors. The main idea of the hybrid ventilation system is to achieve thermal comfort by varying the ON/OFF times of the air conditioners to maintain the temperature within user-defined bands using a predictive control and IAQ is maintained using Healthbox 3.0, a DCV device. Furthermore, this study also designs soft-sensors by combining the Internet of Things (IoT)-based sensors with deep-learning tools. The hardware realization of the control and IoT prototype is also discussed. The proposed novel hybrid ventilation system and the soft-sensors are demonstrated in a real research laboratory, i.e., Center for Research in Automatic Control Engineering (C-RACE) located at Kalasalingam University, India. Our results show the perceived benefits of hybrid ventilation, predictive control, and soft-sensors

    Smart random neural network controller for HVAC using cloud computing technology

    Get PDF

    Reliability Validation of a Low-Cost Particulate Matter IoT Sensor in Indoor and Outdoor Environments Using a Reference Sampler

    Get PDF
    A suitable and quick determination of air quality allows the population to be alerted with respect to high concentrations of pollutants. Recent advances in computer science have led to the development of a high number of low-cost sensors, improving the spatial and temporal resolution of air quality data while increasing the effectiveness of risk assessment. The main objective of this work is to perform a validation of a particulate matter (PM) sensor (HM-3301) in indoor and outdoor environments to study PM2.5 and PM10 concentrations. To date, this sensor has not been evaluated in real-world situations, and its data quality has not been documented. Here, the HM-3301 sensor is integrated into an Internet of things (IoT) platform to establish a permanent Internet connection. The validation is carried out using a reference sampler (LVS3 of Derenda) according to EN12341:2014. It is focused on statistical insight, and environmental conditions are not considered in this study. The ordinary Linear Model, the Generalized Linear Model, Locally Estimated Scatterplot Smoothing, and the Generalized Additive Model have been proposed to compare and contrast the outcomes. The low-cost sensor is highly correlated with the reference measure ( R2 greater than 0.70), especially for PM2.5, with a very high accuracy value. In addition, there is a positive relationship between the two measurements, which can be appropriately fitted through the Locally Estimated Scatterplot Smoothing model

    Exploring Indoor Health: An In-depth Field Study on the Indoor Air Quality Dynamics

    Full text link
    Indoor air pollution, a significant driver of respiratory and cardiovascular diseases, claims 3.2 million lives yearly, according to the World Health Organization, highlighting the pressing need to address this global crisis. In contrast to unconstrained outdoor environments, room structures, floor plans, ventilation systems, and occupant activities all impact the accumulation and spread of pollutants. Yet, comprehensive in-the-wild empirical studies exploring these unique indoor air pollution patterns and scope are lacking. To address this, we conducted a three-month-long field study involving over 28 indoor spaces to delve into the complexities of indoor air pollution. Our study was conducted using our custom-built DALTON air quality sensor and monitoring system, an innovative IoT air quality monitoring solution that considers cost, sensor type, accuracy, network connectivity, power, and usability. Our study also revealed that conventional measures, such as the Indoor Air Quality Index (IAQI), don't fully capture complex indoor air quality dynamics. Hence, we proposed the Healthy Home Index (HHI), a new metric considering the context and household activities, offering a more comprehensive understanding of indoor air quality. Our findings suggest that HHI provides a more accurate air quality assessment, underscoring the potential for wide-scale deployment of our indoor air quality monitoring platform.Comment: 15 pages, 19 figure

    Internet of Things (IoT) in Buildings: A Learning Factory

    Get PDF
    Advances towards smart ecosystems showcase Internet of Things (IoT) as a transversal strategy to improve energy efficiency in buildings, enhance their comfort and environmental conditions, and increase knowledge about building behavior, its relationships with users and the interconnections among themselves and the environmental and ecological context. EU estimates that 75% of the building stock is inefficient and more than 40 years old. Although many buildings have some type of system for regulating the indoor temperature, only a small subset provides integrated heating, ventilation, and air conditioning (HVAC) systems. Within that subset, only a small percentage includes smart sensors, and only a slight portion of that percentage integrates those sensors into IoT ecosystems. This work pursues two objectives. The first is to understand the built environment as a set of interconnected systems constituting a complex framework in which IoT ecosystems are key enabling technologies for improving energy efficiency and indoor air quality (IAQ) by filling the gap between theoretical simulations and real measurements. The second is to understand IoT ecosystems as cost-effective solutions for acquiring data through connected sensors, analyzing information in real time, and building knowledge to make data-driven decisions. The dataset is publicly available for third-party use to assist the scientific community in its research studies. This paper details the functional scheme of the IoT ecosystem following a three-level methodology for (1) identifying buildings (with regard to their use patterns, thermal variation, geographical orientation, etc.) to analyze their performance; (2) selecting representative spaces (according to their location, orientation, use, size, occupancy, etc.) to monitor their behavior; and (3) deploying and configuring an infrastructure with +200 geolocated wireless sensors in +100 representative spaces, collecting a dataset of +10,000 measurements every hour. The results obtained through real installations with IoT as a learning factory include several learned lessons about building complexity, energy consumption, costs, savings, IAQ and health improvement. A proof of concept of building performance prediction based on neural networks (applied to CO2 and temperature) is proposed. This first learning shows that IAQ measurements meet recommended levels around 90% of the time and that an IoT-managed HVAC system can achieve energy-consumption savings of between 10 and 15%. In summary, in a real context involving economic restrictions, complexity, high energy costs, social vulnerability, and climate change, IoT-based strategies, as proposed in this work, offer a modular and interoperable approach, moving towards smart communities (buildings, cities, regions, etc.) by improving energy efficiency and environmental quality (indoor and outdoor) at low cost, with quick implementation, and low impact on users. Great challenges remain for growth and interconnection in IoT use, especially challenges posed by climate change and sustainability

    AirKit: A Citizen-Sensing Toolkit for Monitoring Air Quality.

    Get PDF
    Increasing urbanisation and a better understanding of the negative health effects of air pollution have accelerated the use of Internet of Things (IoT)-based air quality sensors. Low-cost and low-power sensors are now readily available and commonly deployed by individuals and community groups. However, there are a wide range of such IoT devices in circulation that differently focus on problems of sensor validation, data reliability, or accessibility. In this paper, we present AirKit, which was developed as an integrated and open source "social IoT technology". AirKit enables a comprehensive approach to citizen-sensing air quality through several integrated components: (1) the Dustbox 2.0, a particulate matter sensor; (2) Airsift, a data analysis platform; (3) a reliable and automatic remote firmware update system; (4) a "Data Stories" method and tool for communicating citizen data; and (5) an AirKit logbook that provides a guide for designing and running air quality projects, along with instructions for building and using AirKit components. Developed as a social technology toolkit to foster open processes of research co-creation and environmental action, Airkit has the potential to generate expanded engagements with IoT and air quality by improving the accuracy, legibility and use of sensors, data analysis and data communication.This research was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement n. 313347, “Citizen Sensing and Environmental Practice: Assessing Participatory Engagements with Environments through Sensor Technologies”, and from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC Grant Agreement n. 779921), “AirKit: Citizen Sense Air Monitoring Kit”. The University of Cambridge provided additional support through the ESRC Impact Acceleration Account (2020) for enabling impact

    How to control the Indoor Environmental Quality through the use of the Do-It-Yourself approach and new pervasive technologies

    Get PDF
    Abstract The article describes the results of the "Open-source Smart lamp" aimed at designing and developing a smart appliance that integrates a wireless communication system for building automation, following the maker movement philosophy. The device is able to get an overview of the potential of a nearable device equipped with a variety of sensors to broadcast digital data for the management and control of the Indoor Environmental Quality (IEQ) of the built environment. The Smart Lamp installed in a real office in order to test the reliability of the device in the management of the lighting and air quality levels

    A comparative study of calibration methods for low-cost ozone sensors in IoT platforms

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper shows the result of the calibration process of an Internet of Things platform for the measurement of tropospheric ozone (O 3 ). This platform, formed by 60 nodes, deployed in Italy, Spain, and Austria, consisted of 140 metal–oxide O 3 sensors, 25 electro-chemical O 3 sensors, 25 electro-chemical NO 2 sensors, and 60 temperature and relative humidity sensors. As ozone is a seasonal pollutant, which appears in summer in Europe, the biggest challenge is to calibrate the sensors in a short period of time. In this paper, we compare four calibration methods in the presence of a large dataset for model training and we also study the impact of a limited training dataset on the long-range predictions. We show that the difficulty in calibrating these sensor technologies in a real deployment is mainly due to the bias produced by the different environmental conditions found in the prediction with respect to those found in the data training phase.Peer ReviewedPostprint (author's final draft
    • 

    corecore