30 research outputs found

    Verifying a sliding window protocol in mCRL

    Get PDF
    We prove the correctness of a sliding window protocol with an arbitrary finite window size n and sequence numbers modulo 2n. The correctness consists of showing that the sliding window protocol is branching bisimilar to a queue of capacity 2n. The proof is given entirely on the basis of an axiomatic theory

    Verification of a sliding window protocol in ĀµCRL

    Get PDF
    We prove the correctness of a sliding window protocol with an arbitrary finite window size n and sequence numbers modulo 2n. The correctness consists of showing that the sliding window protocol is branching bisimilar to a queue of capacity 2n. The proof is given entirely on the basis of an axiomatic theory, and has been checked in the theorem prover PVS

    Cones and foci for protocol verification revisited

    Get PDF
    We define a cones and foci proof method, which rephrases the question whether two system specifications are branching bisimilar in terms of proof obligations on relations between data objects. Compared to the original cones and foci method from Groote and Springintveld cite{GroSpr01}, our method is more generally applicable, and does not require a preprocessing step to eliminate au au-loops. We prove soundness of our approach and give an application

    Formal Verification of Distributed Systems

    Get PDF
    Fokkink, W.J. [Promotor

    A Multi-Core Solver for Parity Games

    Get PDF
    We describe a parallel algorithm for solving parity games,\ud with applications in, e.g., modal mu-calculus model\ud checking with arbitrary alternations, and (branching) bisimulation\ud checking. The algorithm is based on Jurdzinski's Small Progress\ud Measures. Actually, this is a class of algorithms, depending on\ud a selection heuristics.\ud \ud Our algorithm operates lock-free, and mostly wait-free (except for\ud infrequent termination detection), and thus allows maximum\ud parallelism. Additionally, we conserve memory by avoiding storage\ud of predecessor edges for the parity graph through strictly\ud forward-looking heuristics.\ud \ud We evaluate our multi-core implementation's behaviour on parity games\ud obtained from mu-calculus model checking problems for a set of\ud communication protocols, randomly generated problem instances, and\ud parametric problem instances from the literature.\ud \u

    Distributed Branching Bisimulation Minimization by Inductive Signatures

    Get PDF
    We present a new distributed algorithm for state space minimization modulo branching bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process and the signatures have been optimized to exploit the fact that the input graph contains no tau-loops. The optimization in the refinement process is meant to reduce both the number of iterations needed and the memory requirements. In the former case we cannot prove that there is an improvement, but our experiments show that in many cases the number of iterations is smaller. In the latter case, we can prove that the worst case memory use of the new algorithm is linear in the size of the state space, whereas the old algorithm has a quadratic upper bound. The paper includes a proof of correctness of the new algorithm and the results of a number of experiments that compare the performance of the old and the new algorithms

    Formal verification of a leader election protocol in process algebra

    Get PDF
    AbstractIn 1982 Dolev, et al. [10] presented an O(nlogn) unidirectional distributed algorithm for the circular extrema-finding (or leader-election) problem. At the same time Peterson came up with a nearly identical solution. In this paper, we bring the correctness of this algorithm to a completely formal level. This relatively small protocol, which can be described on half a page, requires a rather involved proof for guaranteeing that it behaves well in all possible circumstances. To our knowledge, this is one of the more advanced case-studies in formal verification based on process algebra

    Mechanical Verification of a Two-Way Sliding Window Protocol (Full version including proofs)

    Get PDF
    We prove the correctness of a two-way sliding window protocol with piggybacking, where the acknowledgments of the latest received data are attached to the next data transmitted back into the channel. The window size of both parties are considered to be finite, though they can be of different sizes. We show that this protocol is equivalent (branching bisimilar) to a pair of FIFO queues of finite capacities. The protocol is first modeled and manually proved for its correctness in the process algebraic language of muCRL. We use the theorem prover PVS to formalize and to mechanically prove the correctness. This implies both safety and liveness (under the assumption of fairness)

    08332 Abstracts Collection -- Distributed Verification and Grid Computing

    Get PDF
    From 08/10/2008 to 08/14/2008 the Dagstuhl Seminar 08332 ``Distributed Verification and Grid Computing\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore