45 research outputs found

    Search Through Systematic Set Enumeration

    Get PDF
    In many problem domains, solutions take the form of unordered sets. We present the Set-Enumerations (SE)-tree - a vehicle for representing sets and/or enumerating them in a best-first fashion. We demonstrate its usefulness as the basis for a unifying search-based framework for domains where minimal (maximal) elements of a power set are targeted, where minimal (maximal) partial instantiations of a set of variables are sought, or where a composite decision is not dependent on the order in which its primitive component-decisions are taken. Particular instantiations of SE-tree-based algorithms for some AI problem domains are used to demonstrate the general features of the approach. These algorithms are compared theoretically and empirically with current algorithms

    A System for the Diagnosis of Faults using a First Principles Approach

    Get PDF
    One of the primary areas of application of Artificial Intelligence is diagnosis. Diagnosis from first principles is a diagnostic technique which uses knowledge of the designed structure and function of a device to determine the possible causes of the malfunction. This work builds on the foundation of a theory of diagnosis by implementing and extending the theory. A correction to the algorithm which defines the theory is presented. The theory is extended for multiple sets of observations of the system and measurement data. A fundamental problem in diagnosis is selecting the measurement which will be of the most benefit in reducing the number of competing diagnoses for a system. A heuristic which selects a component whose measurement is likely to be beneficial in isolating the actual diagnosis is also presented

    Model-based reconfiguration: Diagnosis and recovery

    Get PDF
    We extend Reiter's general theory of model-based diagnosis to a theory of fault detection, identification, and reconfiguration (FDIR). The generality of Reiter's theory readily supports an extension in which the problem of reconfiguration is viewed as a close analog of the problem of diagnosis. Using a reconfiguration predicate 'rcfg' analogous to the abnormality predicate 'ab,' we derive a strategy for reconfiguration by transforming the corresponding strategy for diagnosis. There are two obvious benefits of this approach: algorithms for diagnosis can be exploited as algorithms for reconfiguration and we have a theoretical framework for an integrated approach to FDIR. As a first step toward realizing these benefits we show that a class of diagnosis engines can be used for reconfiguration and we discuss algorithms for integrated FDIR. We argue that integrating recovery and diagnosis is an essential next step if this technology is to be useful for practical applications

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Multiple Fault Isolation in Redundant Systems

    Get PDF
    Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption

    Multiple Fault Isolation in Redundant Systems

    Get PDF
    Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption
    corecore