508 research outputs found

    Time series data mining: preprocessing, analysis, segmentation and prediction. Applications

    Get PDF
    Currently, the amount of data which is produced for any information system is increasing exponentially. This motivates the development of automatic techniques to process and mine these data correctly. Specifically, in this Thesis, we tackled these problems for time series data, that is, temporal data which is collected chronologically. This kind of data can be found in many fields of science, such as palaeoclimatology, hydrology, financial problems, etc. TSDM consists of several tasks which try to achieve different objectives, such as, classification, segmentation, clustering, prediction, analysis, etc. However, in this Thesis, we focus on time series preprocessing, segmentation and prediction. Time series preprocessing is a prerequisite for other posterior tasks: for example, the reconstruction of missing values in incomplete parts of time series can be essential for clustering them. In this Thesis, we tackled the problem of massive missing data reconstruction in SWH time series from the Gulf of Alaska. It is very common that buoys stop working for different periods, what it is usually related to malfunctioning or bad weather conditions. The relation of the time series of each buoy is analysed and exploited to reconstruct the whole missing time series. In this context, EANNs with PUs are trained, showing that the resulting models are simple and able to recover these values with high precision. In the case of time series segmentation, the procedure consists in dividing the time series into different subsequences to achieve different purposes. This segmentation can be done trying to find useful patterns in the time series. In this Thesis, we have developed novel bioinspired algorithms in this context. For instance, for paleoclimate data, an initial genetic algorithm was proposed to discover early warning signals of TPs, whose detection was supported by expert opinions. However, given that the expert had to individually evaluate every solution given by the algorithm, the evaluation of the results was very tedious. This led to an improvement in the body of the GA to evaluate the procedure automatically. For significant wave height time series, the objective was the detection of groups which contains extreme waves, i.e. those which are relatively large with respect other waves close in time. The main motivation is to design alert systems. This was done using an HA, where an LS process was included by using a likelihood-based segmentation, assuming that the points follow a beta distribution. Finally, the analysis of similarities in different periods of European stock markets was also tackled with the aim of evaluating the influence of different markets in Europe. When segmenting time series with the aim of reducing the number of points, different techniques have been proposed. However, it is an open challenge given the difficulty to operate with large amounts of data in different applications. In this work, we propose a novel statistically-driven CRO algorithm (SCRO), which automatically adapts its parameters during the evolution, taking into account the statistical distribution of the population fitness. This algorithm improves the state-of-the-art with respect to accuracy and robustness. Also, this problem has been tackled using an improvement of the BBPSO algorithm, which includes a dynamical update of the cognitive and social components in the evolution, combined with mathematical tricks to obtain the fitness of the solutions, which significantly reduces the computational cost of previously proposed coral reef methods. Also, the optimisation of both objectives (clustering quality and approximation quality), which are in conflict, could be an interesting open challenge, which will be tackled in this Thesis. For that, an MOEA for time series segmentation is developed, improving the clustering quality of the solutions and their approximation. The prediction in time series is the estimation of future values by observing and studying the previous ones. In this context, we solve this task by applying prediction over high-order representations of the elements of the time series, i.e. the segments obtained by time series segmentation. This is applied to two challenging problems, i.e. the prediction of extreme wave height and fog prediction. On the one hand, the number of extreme values in SWH time series is less with respect to the number of standard values. In this way, the prediction of these values cannot be done using standard algorithms without taking into account the imbalanced ratio of the dataset. For that, an algorithm that automatically finds the set of segments and then applies EANNs is developed, showing the high ability of the algorithm to detect and predict these special events. On the other hand, fog prediction is affected by the same problem, that is, the number of fog events is much lower tan that of non-fog events, requiring a special treatment too. A preprocessing of different data coming from sensors situated in different parts of the Valladolid airport are used for making a simple ANN model, which is physically corroborated and discussed. The last challenge which opens new horizons is the estimation of the statistical distribution of time series to guide different methodologies. For this, the estimation of a mixed distribution for SWH time series is then used for fixing the threshold of POT approaches. Also, the determination of the fittest distribution for the time series is used for discretising it and making a prediction which treats the problem as ordinal classification. The work developed in this Thesis is supported by twelve papers in international journals, seven papers in international conferences, and four papers in national conferences

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Optical Satellite Remote Sensing of the Coastal Zone Environment — An Overview

    Get PDF
    Optical remote-sensing data are a powerful source of information for monitoring the coastal environment. Due to the high complexity of coastal environments, where different natural and anthropogenic phenomenon interact, the selection of the most appropriate sensor(s) is related to the applications required, and the different types of resolutions available (spatial, spectral, radiometric, and temporal) need to be considered. The development of specific techniques and tools based on the processing of optical satellite images makes possible the production of information useful for coastal environment management, without any destructive impacts. This chapter will highlight different subjects related to coastal environments: shoreline change detection, ocean color, water quality, river plumes, coral reef, alga bloom, bathymetry, wetland mapping, and coastal hazards/vulnerability. The main objective of this chapter is not an exhaustive description of the image processing methods/algorithms employed in coastal environmental studies, but focus in the range of applications available. Several limitations were identified. The major challenge still is to have remote-sensing techniques adopted as a routine tool in assessment of change in the coastal zone. Continuing research is required into the techniques employed for assessing change in the coastal environment

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Nuevos algoritmos de soft-computing en física atmosférica

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 12-03-2019This Ph.D. Thesis elaborates and analyzes several hybrid Soft-Computing algorithms for optimization and prediction problems in Atmospheric Physics. The core of the Thesis is a recently developed optimization meta-heuristic, the Coral Reefs Optimization Algorithm (CRO), an evolutionary-based approach which considers a population of possible solutions to a given optimization problem. It simulates different procedures mimicking real processes occurring in coral reefs in order to evolve the population towards good solutions for the problem. Alternative modifications of this algorithm lead to powerful co-evolution meta-heuristics, such as theCRO-SL, in which Substrates implementing different search procedures are included. Another modification of the algorithm leads to the CRO-SP, which considers Species in the evolutionof the population, and it is able to deal with different encodings within a single population.These approaches are hybridized with other Machine Learning and traditional algorithms such as neural networks or the Analogue Method (AM), to come up with powerful hybrid approaches able to solve hard problems in Atmospheric Physics...En esta Tesis Doctoral se elaboran y analizan en detalle diferentes algoritmos híbridos deSoft-Computing para problemas de optimización y predicción en Física de la Atmósfera. El núcleo central de la Tesis es un algoritmo meta-heurístico de optimización recientemente desarrollado, conocido como Coral Reefs Optimization algorithm (CRO). Este algoritmo pertenece a la familia de la Computación Evolutiva, de forma que considera una población de solucionesa un problema concreto, y simula los diferentes procesos que ocurren en un arrecife de coralpara evolucionar dicha población hacia la solución óptima del problema. Recientemente se han propuesto diferentes versiones del algoritmo CRO básico para obtener mecanismos potentes de optimización co-evolutiva. Una de estas modificaciones es el CRO-SL, en la que se definen un conjunto de Sustratos en el algoritmo, de manera que cada sustrato simula un mecanismo de evolución diferente, que son aplicados a la vez en una única población. Otra modificación hadado lugar al conocido como CRO-SP, un algoritmo donde se definen diferentes Especies, capaz de manejar varias codificaciones para un mismo problema a la vez. Estas versiones del CRO han sido hibridadas con varias técnicas de Aprendizaje Máquina, tales como varios tipos de redes neuronales de entrenamiento rápido, sistemas de aprendizaje tales como Máquinas de Vectores Soporte, o sistemas de predicción vinculados totalmente al área de la Física Atmosférica, tales como el Método de los Análogos (AM). Los algoritmos híbridos obtenidos son muy robustos y capaces de obtener excelentes soluciones en diferentes problemas donde han sido probados...Fac. de Ciencias FísicasTRUEunpu

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version
    corecore