16,052 research outputs found

    Using Low Level Linear Memory Management for Type-Preserving Mark-Sweep Garbage Collector

    Get PDF
    Efficient low-level systems such as garbage collectors need more control over memory than safe high-level languages usually provide. Due to this constraint, garbage collectors are typically written in unsafe languages such as C. A collector of this form usually resides as a trusted primitive runtime service outside the model of the programming language. The type safety of these languages depends on the assumption that the garbage collector will not violate any typing invariants. However, no realistic systems provide proof of this assumption. A garbage collector written in a strongly typed language can guarantee not only the safety of the garbage collector and the program being garbage collected (mutator), but also the interaction between the collector and the mutator. Removing the garbage collector from the trusted computing base has many additional benefits: Untrusted code could be given more control over memory management without sacrificing security. Low-level code such as device drivers could interface in a safe way with a garbage collector. For these and the growing prevalence of garbage collectors in the typical programming system necessitate a safe solution. Previous research by Wang et al introduced a safe copying collector based on regions, where the live graph structure of the heap is copied from an old region to a newer region. This paper seeks to improve the efficiency of type-preserving garbage collection with the introduction of a type-preserving mark and sweep garbage collector

    Incremental copying garbage collection for WAM-based Prolog systems

    Full text link
    The design and implementation of an incremental copying heap garbage collector for WAM-based Prolog systems is presented. Its heap layout consists of a number of equal-sized blocks. Other changes to the standard WAM allow these blocks to be garbage collected independently. The independent collection of heap blocks forms the basis of an incremental collecting algorithm which employs copying without marking (contrary to the more frequently used mark&copy or mark&slide algorithms in the context of Prolog). Compared to standard semi-space copying collectors, this approach to heap garbage collection lowers in many cases the memory usage and reduces pause times. The algorithm also allows for a wide variety of garbage collection policies including generational ones. The algorithm is implemented and evaluated in the context of hProlog.Comment: 33 pages, 22 figures, 5 tables. To appear in Theory and Practice of Logic Programming (TPLP

    Beltway: Getting Around Garbage Collection Gridlock

    Get PDF
    We present the design and implementation of a new garbage collection framework that significantly generalizes existing copying collectors. The Beltway framework exploits and separates object age and incrementality. It groups objects in one or more increments on queues called belts, collects belts independently, and collects increments on a belt in first-in-first-out order. We show that Beltway configurations, selected by command line options, act and perform the same as semi-space, generational, and older-first collectors, and encompass all previous copying collectors of which we are aware. The increasing reliance on garbage collected languages such as Java requires that the collector perform well. We show that the generality of Beltway enables us to design and implement new collectors that are robust to variations in heap size and improve total execution time over the best generational copying collectors of which we are aware by up to 40%, and on average by 5 to 10%, for small to moderate heap sizes. New garbage collection algorithms are rare, and yet we define not just one, but a new family of collectors that subsumes previous work. This generality enables us to explore a larger design space and build better collectors

    Formal Derivation of Concurrent Garbage Collectors

    Get PDF
    Concurrent garbage collectors are notoriously difficult to implement correctly. Previous approaches to the issue of producing correct collectors have mainly been based on posit-and-prove verification or on the application of domain-specific templates and transformations. We show how to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal specification, emphasizing the application of domain-independent design theories and transformations. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to account for the dynamics of concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the Proceedings of MPC 201

    Liveness-Based Garbage Collection for Lazy Languages

    Full text link
    We consider the problem of reducing the memory required to run lazy first-order functional programs. Our approach is to analyze programs for liveness of heap-allocated data. The result of the analysis is used to preserve only live data---a subset of reachable data---during garbage collection. The result is an increase in the garbage reclaimed and a reduction in the peak memory requirement of programs. While this technique has already been shown to yield benefits for eager first-order languages, the lack of a statically determinable execution order and the presence of closures pose new challenges for lazy languages. These require changes both in the liveness analysis itself and in the design of the garbage collector. To show the effectiveness of our method, we implemented a copying collector that uses the results of the liveness analysis to preserve live objects, both evaluated (i.e., in WHNF) and closures. Our experiments confirm that for programs running with a liveness-based garbage collector, there is a significant decrease in peak memory requirements. In addition, a sizable reduction in the number of collections ensures that in spite of using a more complex garbage collector, the execution times of programs running with liveness and reachability-based collectors remain comparable

    Decrypting The Java Gene Pool: Predicting Objects' Lifetimes with Micro-patterns

    Get PDF
    Pretenuring long-lived and immortal objects into infrequently or never collected regions reduces garbage collection costs significantly. However, extant approaches either require computationally expensive, application-specific, off-line profiling, or consider only allocation sites common to all programs, i.e. invoked by the virtual machine rather than application programs. In contrast, we show how a simple program analysis, combined with an object lifetime knowledge bank, can be exploited to match both runtime system and application program structure with object lifetimes. The complexity of the analysis is linear in the size of the program, so need not be run ahead of time. We obtain performance gains between 6-77% in GC time against a generational copying collector for several SPEC jvm98 programs
    • ā€¦
    corecore