454 research outputs found

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the Ď„-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the Ď„-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques

    Evaluating the effectiveness of Cooperative/Coordinated Multipoint (CoMP) LTE feature in uplink and downlink transmissions

    Get PDF
    Shannon demonstrated that the channel capacity depends of the ratio of the received signal power to interference plus noise power (SINR). Inter-cell interference caused by neighbouring base stations (BSs) has been identified as one of the most severe problem towards the deployment of LTE technology as it can significantly deteriorate the performance of cellside User Equipment (UE). However, because of regulatory and radiation restrictions as well as operational costs, signal power may only be increased only up to a certain limit to reduce the interference. The other common radio propagation impairment is multipath. Multipath refers to a scenario where multiple copies of a signal propagate to a receiver using different paths. The paths can be created due to signal reflection, scattering and diffraction. As will be discussed later the effects of multipath contribute little to intercell interference because multipath characteristics such as delay spread are compensated for using cyclic prefixes. In this work, we will limit our scope to interference as it has been identified as the main cause of performance degradation for cell edge users due to the full frequency reuse technique used in LTE. To mitigate interference 3GPP devised options of increasing the capacity in LTEAdvanced Release 12 which include the use of spectral aggregation, employing Multiple Input and Multiple Output (MIMO) Antenna techniques, deploying more base stations and micro and femto cells, increasing the degree of sectorisation and Coordinated Multipoint (CoMP). We are primarily interested in evaluating performance improvements introduced when uplink (UL) and downlink (DL) coordinated/cooperative multipoint (CoMP) is enabled in LTE Advanced Release 12 as a way of reducing interference among sites. The CoMP option of reducing interference does not require deployment of new equipment compared to the other options mentioned above hence network deployment costs are minimal. CoMP in theory is known to reduce interference especially for cell edge users and therefore improves network fairness. With CoMP, multiple points coordinate with each other such that transmission of signals to and from other points do not incur serious interference or the interference can even be exploited as a meaningful signal. In September 2011 work on specifications for CoMP support was started in 3GPP LTEAdvanced as one of the core features in LTE-Advanced Release 11 to improve cell edge user throughput as well as the average network throughput. We set to do field measurements in the evaluation of the effectiveness of CoMP in LTE. 3GPP LTE Release 12 was used and cell edge users' performance was the focus. The network operates in 2330 - 2350 MHz band (Channel 40). From the field measurements, it was demonstrated that the CoMP (Scenario 2) feature indeed effective in improving service quality/user experience/fairness for cell edge users. CoMP inherently improves network capacity. A seven (7) percent throughput was noticed

    Uplink CoMP Capability Improvements In Heterogeneous Cellular Networks

    Get PDF
    LTE-Advanced meets the challenge raised by powerful, mobile devices and bandwidth-hungry applications by investing in solutions such as carrier aggregation, higher order MIMO, relay nodes and Coordinated Multipoint (CoMP) transmission/reception. The latter, in particular, is envisioned to be one of the most important techniques in LTE-Advanced to improve the throughput and functionality of cell borders. CoMP allows users to have multiple data transmission and reception from/toward multiple cooperating eNodeBs (eNBs), increasing the utilization factor of the network. Resource allocation in the uplink is especially beneficial because more sophisticated algorithms can leverage the availability of additional connection points where the signal from the User Equipment (UE) is processed, ultimately providing UEs with increased throughput. Additionally, a significant part of the interference caused by neighboring cells can be seen as a useful received signal thanks to CoMP, provided those cells are part of the Coordinated Reception Point (CRP) set. This is especially important in critical regions, in terms of interference, like cell edges. Finally, in the case of joint multi-cell scheduling, CoMP introduces a reduction in the backhaul load by requiring only scheduling data to be transferred between coordinated eNBs. Arguably, CoMP is most appealing in the uplink direction since it does not require UE modifications: indeed, users need not be aware that there is any kind of cooperation among receiving eNBs. UEs are merely scheduled for transmission on a set of frequencies that happens to be split among different eNBs, although they still retain standard signaling channels through only one of these eNBs, usually referred to as the serving cell. In this work we focus on uplink CoMP from a system point of view. Specifically, we are interested in comparing through simulation the performance of uplink CoMP in various scenarios with different user participation to CoMP transmissions and CoMP margins. Some works have already investigated uplink CoMP both in simulation and through field trials. Our contribution confirms the findings of previous works as far as the throughput gain for edge users is concerned, but introduces three novel observations that can spur future investigations on CoMP systems, in both downlink and uplink regime, and lead to the design of new resource allocation algorithms: • We look at Heterogeneous scenario where there is no restriction in the type of cells that can be in the CRP set, but simultaneously we introduce clustering option included limited number of Macro and small cells to be acted independently from other clusters in CoMP process. • We introduce a parameter called CoMP Pool Percentage (CPP), which quantifies the fraction of PRBs that are reserved for UEs using a specific eNB as CRP (out of the resources nominally available to that eNB). Our algorithm show that the setting of CPP must be carefully gauged depending on the number of CoMP users and the scenario. • We proposed an innovative dynamic algorithm to make decision of the CPP value in order to improve the gain for CoMP users while considering the whole network gain. Combination of the three above mentioned routine and algorithms, according to simulations, confirms an average gain of at least 20% percent for the CoMP users, (average over various population) locating in cell boarder, while the whole network benefits by average of 5% gain for all the users (see results section). The algorithm also guarantees more gain for more values of CoMP margin. In other words, the more the population of CoMP users locating in cell borders the more would be the achievable gain. Objectives of this PhD thesis are concluded as follows: • Design a Network-level simulator whose features are close to a real LTE network, including advanced capabilities and innovations • Observe the response of the network to parameters changes • Increase the throughput gain (using CoMP vs. non using it) and the quality of service • Design and evaluate the Novel Scheduling Algorithm • Compare the obtained results with real case

    Generalized Coordinated Multipoint Framework for 5G and Beyond

    Get PDF
    The characteristic feature of 5G is the diversity of its services for different user needs. However, the requirements for these services are competing in nature, which impresses the necessity of a coordinated and flexible network architecture. Although coordinated multipoint (CoMP) systems were primarily proposed to improve the cell edge performance in 4G, their collaborative nature can be leveraged to support the diverse requirements and enabling technologies of 5G and beyond networks. To this end, we propose generalization of CoMP to a proactive and efficient resource utilization framework capable of supporting different user requirements such as reliability, latency, throughput, and security while considering network constraints. This article elaborates on the multiple aspects, inputs, and outputs of the generalized CoMP (GCoMP) framework. Apart from user requirements, the GCoMP decision mechanism also considers the CoMP scenario and network architecture to decide upon outputs such as CoMP technique or appropriate coordinating clusters. To enable easier understanding of the concept, popular use cases, such as vehicle-to-everything (V2X) communication and eHealth, are studied. Additionally, interesting challenges and open areas in GCoMP are discussed.Comment: 11 pages, 7 figure

    Cooperative Resource Management and Interference Mitigation for Dense Networks

    Get PDF
    • …
    corecore