81,172 research outputs found

    A Coordinate System for Gaussian Networks

    Get PDF
    This paper studies network information theory problems where the external noise is Gaussian distributed. In particular, the Gaussian broadcast channel with coherent fading and the Gaussian interference channel are investigated. It is shown that in these problems, non-Gaussian code ensembles can achieve higher rates than the Gaussian ones. It is also shown that the strong Shamai-Laroia conjecture on the Gaussian ISI channel does not hold. In order to analyze non-Gaussian code ensembles over Gaussian networks, a geometrical tool using the Hermite polynomials is proposed. This tool provides a coordinate system to analyze a class of non-Gaussian input distributions that are invariant over Gaussian networks

    On the relationship between Gaussian stochastic blockmodels and label propagation algorithms

    Full text link
    The problem of community detection receives great attention in recent years. Many methods have been proposed to discover communities in networks. In this paper, we propose a Gaussian stochastic blockmodel that uses Gaussian distributions to fit weight of edges in networks for non-overlapping community detection. The maximum likelihood estimation of this model has the same objective function as general label propagation with node preference. The node preference of a specific vertex turns out to be a value proportional to the intra-community eigenvector centrality (the corresponding entry in principal eigenvector of the adjacency matrix of the subgraph inside that vertex's community) under maximum likelihood estimation. Additionally, the maximum likelihood estimation of a constrained version of our model is highly related to another extension of label propagation algorithm, namely, the label propagation algorithm under constraint. Experiments show that the proposed Gaussian stochastic blockmodel performs well on various benchmark networks.Comment: 22 pages, 17 figure

    Transferable neural networks for enhanced sampling of protein dynamics

    Full text link
    Variational auto-encoder frameworks have demonstrated success in reducing complex nonlinear dynamics in molecular simulation to a single non-linear embedding. In this work, we illustrate how this non-linear latent embedding can be used as a collective variable for enhanced sampling, and present a simple modification that allows us to rapidly perform sampling in multiple related systems. We first demonstrate our method is able to describe the effects of force field changes in capped alanine dipeptide after learning a model using AMBER99. We further provide a simple extension to variational dynamics encoders that allows the model to be trained in a more efficient manner on larger systems by encoding the outputs of a linear transformation using time-structure based independent component analysis (tICA). Using this technique, we show how such a model trained for one protein, the WW domain, can efficiently be transferred to perform enhanced sampling on a related mutant protein, the GTT mutation. This method shows promise for its ability to rapidly sample related systems using a single transferable collective variable and is generally applicable to sets of related simulations, enabling us to probe the effects of variation in increasingly large systems of biophysical interest.Comment: 20 pages, 10 figure

    Distributed Maximum Likelihood for Simultaneous Self-localization and Tracking in Sensor Networks

    Full text link
    We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the developed algorithms are able to learn the localization parameters.Comment: shorter version is about to appear in IEEE Transactions of Signal Processing; 22 pages, 15 figure

    A Bayesian Poisson-Gaussian Process Model for Popularity Learning in Edge-Caching Networks

    Get PDF
    Edge-caching is recognized as an efficient technique for future cellular networks to improve network capacity and user-perceived quality of experience. To enhance the performance of caching systems, designing an accurate content request prediction algorithm plays an important role. In this paper, we develop a flexible model, a Poisson regressor based on a Gaussian process, for the content request distribution. The first important advantage of the proposed model is that it encourages the already existing or seen contents with similar features to be correlated in the feature space and therefore it acts as a regularizer for the estimation. Second, it allows to predict the popularities of newly-added or unseen contents whose statistical data is not available in advance. In order to learn the model parameters, which yield the Poisson arrival rates or alternatively the content \textit{popularities}, we invoke the Bayesian approach which is robust against over-fitting. However, the resulting posterior distribution is analytically intractable to compute. To tackle this, we apply a Markov Chain Monte Carlo (MCMC) method to approximate this distribution which is also asymptotically exact. Nevertheless, the MCMC is computationally demanding especially when the number of contents is large. Thus, we employ the Variational Bayes (VB) method as an alternative low complexity solution. More specifically, the VB method addresses the approximation of the posterior distribution through an optimization problem. Subsequently, we present a fast block-coordinate descent algorithm to solve this optimization problem. Finally, extensive simulation results both on synthetic and real-world datasets are provided to show the accuracy of our prediction algorithm and the cache hit ratio (CHR) gain compared to existing methods from the literature
    • …
    corecore