68 research outputs found

    Jornadas Nacionales de Investigación en Ciberseguridad: actas de las VIII Jornadas Nacionales de Investigación en ciberseguridad: Vigo, 21 a 23 de junio de 2023

    Get PDF
    Jornadas Nacionales de Investigación en Ciberseguridad (8ª. 2023. Vigo)atlanTTicAMTEGA: Axencia para a modernización tecnolóxica de GaliciaINCIBE: Instituto Nacional de Cibersegurida

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Analysis and design of security mechanisms in the context of Advanced Persistent Threats against critical infrastructures

    Get PDF
    Industry 4.0 can be defined as the digitization of all components within the industry, by combining productive processes with leading information and communication technologies. Whereas this integration has several benefits, it has also facilitated the emergence of several attack vectors. These can be leveraged to perpetrate sophisticated attacks such as an Advanced Persistent Threat (APT), that ultimately disrupts and damages critical infrastructural operations with a severe impact. This doctoral thesis aims to study and design security mechanisms capable of detecting and tracing APTs to ensure the continuity of the production line. Although the basic tools to detect individual attack vectors of an APT have already been developed, it is important to integrate holistic defense solutions in existing critical infrastructures that are capable of addressing all potential threats. Additionally, it is necessary to prospectively analyze the requirements that these systems have to satisfy after the integration of novel services in the upcoming years. To fulfill these goals, we define a framework for the detection and traceability of APTs in Industry 4.0, which is aimed to fill the gap between classic security mechanisms and APTs. The premise is to retrieve data about the production chain at all levels to correlate events in a distributed way, enabling the traceability of an APT throughout its entire life cycle. Ultimately, these mechanisms make it possible to holistically detect and anticipate attacks in a timely and autonomous way, to deter the propagation and minimize their impact. As a means to validate this framework, we propose some correlation algorithms that implement it (such as the Opinion Dynamics solution) and carry out different experiments that compare the accuracy of response techniques that take advantage of these traceability features. Similarly, we conduct a study on the feasibility of these detection systems in various Industry 4.0 scenarios

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Automatic Building of a Powerful IDS for The Cloud Based on Deep Neural Network by Using a Novel Combination of Simulated Annealing Algorithm and Improved Self- Adaptive Genetic Algorithm

    Get PDF
    Cloud computing (CC) is the fastest-growing data hosting and computational technology that stands today as a satisfactory answer to the problem of data storage and computing. Thereby, most organizations are now migratingtheir services into the cloud due to its appealing features and its tangible advantages. Nevertheless, providing privacy and security to protect cloud assets and resources still a very challenging issue. To address the aboveissues, we propose a smart approach to construct automatically an efficient and effective anomaly network IDS based on Deep Neural Network, by using a novel hybrid optimization framework “ISAGASAA”. ISAGASAA framework combines our new self-adaptive heuristic search algorithm called “Improved Self-Adaptive Genetic Algorithm” (ISAGA) and Simulated Annealing Algorithm (SAA). Our approach consists of using ISAGASAA with the aim of seeking the optimal or near optimal combination of most pertinent values of the parametersincluded in building of DNN based IDS or impacting its performance, which guarantee high detection rate, high accuracy and low false alarm rate. The experimental results turn out the capability of our IDS to uncover intrusionswith high detection accuracy and low false alarm rate, and demonstrate its superiority in comparison with stateof-the-art methods

    INTER-ENG 2020

    Get PDF
    These proceedings contain research papers that were accepted for presentation at the 14th International Conference Inter-Eng 2020 ,Interdisciplinarity in Engineering, which was held on 8–9 October 2020, in Târgu Mureș, Romania. It is a leading international professional and scientific forum for engineers and scientists to present research works, contributions, and recent developments, as well as current practices in engineering, which is falling into a tradition of important scientific events occurring at Faculty of Engineering and Information Technology in the George Emil Palade University of Medicine, Pharmacy Science, and Technology of Târgu Mures, Romania. The Inter-Eng conference started from the observation that in the 21st century, the era of high technology, without new approaches in research, we cannot speak of a harmonious society. The theme of the conference, proposing a new approach related to Industry 4.0, was the development of a new generation of smart factories based on the manufacturing and assembly process digitalization, related to advanced manufacturing technology, lean manufacturing, sustainable manufacturing, additive manufacturing, and manufacturing tools and equipment. The conference slogan was “Europe’s future is digital: a broad vision of the Industry 4.0 concept beyond direct manufacturing in the company”

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Optimized and Automated Machine Learning Techniques Towards IoT Data Analytics and Cybersecurity

    Get PDF
    The Internet-of-Things (IoT) systems have emerged as a prevalent technology in our daily lives. With the wide spread of sensors and smart devices in recent years, the data generation volume and speed of IoT systems have increased dramatically. In most IoT systems, massive volumes of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT services and functionalities. Machine Learning (ML) approaches have shown their capacity for IoT data analytics. However, applying ML models to IoT data analytics tasks still faces many difficulties and challenges. The first challenge is to process large amounts of dynamic IoT data to make accurate and informed decisions. The second challenge is to automate and optimize the data analytics process. The third challenge is to protect IoT devices and systems against various cyber threats and attacks. To address the IoT data analytics challenges, this thesis proposes various ML-based frameworks and data analytics approaches in several applications. Specifically, the first part of the thesis provides a comprehensive review of applying Automated Machine Learning (AutoML) techniques to IoT data analytics tasks. It discusses all procedures of the general ML pipeline. The second part of the thesis proposes several supervised ML-based novel Intrusion Detection Systems (IDSs) to improve the security of the Internet of Vehicles (IoV) systems and connected vehicles. Optimization techniques are used to obtain optimized ML models with high attack detection accuracy. The third part of the thesis developed unsupervised ML algorithms to identify network anomalies and malicious network entities (e.g., attacker IPs, compromised machines, and polluted files/content) to protect Content Delivery Networks (CDNs) from service targeting attacks, including distributed denial of service and cache pollution attacks. The proposed framework is evaluated on real-world CDN access log data to illustrate its effectiveness. The fourth part of the thesis proposes adaptive online learning algorithms for addressing concept drift issues (i.e., data distribution changes) and effectively handling dynamic IoT data streams in order to provide reliable IoT services. The development of drift adaptive learning methods can effectively adapt to data distribution changes and avoid data analytics model performance degradation

    Intrusion Detection System against Denial of Service attack in Software-Defined Networking

    Get PDF
    Das exponentielle Wachstum der Online-Dienste und des über die Kommunikationsnetze übertragenen Datenvolumens macht es erforderlich, die Struktur traditioneller Netzwerke durch ein neues Paradigma zu ersetzen, das sich den aktuellen Anforderungen anpasst. Software-Defined Networking (SDN) ist hierfür eine fortschrittliche Netzwerkarchitektur, die darauf abzielt, das traditionelle Netzwerk in ein flexibleres Netzwerk umzuwandeln, das sich an die wachsenden Anforderungen anpasst. Im Gegensatz zum traditionellen Netzwerk ermöglicht SDN die Entkopplung von Steuer- und Datenebene, um Netzwerkressourcen effizient zu überwachen, zu konfigurieren und zu optimieren. Es verfügt über einen zentralisierten Controller mit einer globalen Netzwerksicht, der seine Ressourcen über programmierbare Schnittstellen verwaltet. Die zentrale Steuerung bringt jedoch neue Sicherheitsschwachstellen mit sich und fungiert als Single Point of Failure, den ein böswilliger Benutzer ausnutzen kann, um die normale Netzwerkfunktionalität zu stören. So startet der Angreifer einen massiven Datenverkehr, der als Distributed-Denial-of-Service Angriff (DDoSAngriff) von der SDN-Infrastrukturebene in Richtung des Controllers bekannt ist. Dieser DDoS-Angriff führt zu einer Sättigung der Steuerkanal-Bandbreite und belegt die Ressourcen des Controllers. Darüber hinaus erbt die SDN-Architektur einige Angriffsarten aus den traditionellen Netzwerken. Der Angreifer fälscht beispielweise die Pakete, um gutartig zu erscheinen, und zielt dann auf die traditionellen DDoS-Ziele wie Hosts, Server, Anwendungen und Router ab. In dieser Arbeit wird das Verhalten von böswilligen Benutzern untersucht. Anschließend wird ein Intrusion Detection System (IDS) zum Schutz der SDN-Umgebung vor DDoS-Angriffen vorgestellt. Das IDS berücksichtigt dabei drei Ansätze, um ausreichendes Feedback über den laufenden Verkehr durch die SDN-Architektur zu erhalten: die Informationen von einem externen Gerät, den OpenFlow-Kanal und die Flow-Tabelle. Daher besteht das vorgeschlagene IDS aus drei Komponenten. Das Inspector Device verhindert, dass böswillige Benutzer einen Sättigungsangriff auf den SDN-Controller starten. Die Komponente Convolutional Neural Network (CNN) verwendet eindimensionale neuronale Faltungsnetzwerke (1D-CNN), um den Verkehr des Controllers über den OpenFlow-Kanal zu analysieren. Die Komponente Deep Learning Algorithm(DLA) verwendet Recurrent Neural Networks (RNN), um die vererbten DDoS-Angriffe zu erkennen. Sie unterstützt auch die Unterscheidung zwischen bösartigen und gutartigen Benutzern als neue Gegenmaßnahme. Am Ende dieser Arbeit werden alle vorgeschlagenen Komponenten mit dem Netzwerkemulator Mininet und der Programmiersprache Python modelliert, um ihre Machbarkeit zu testen. Die Simulationsergebnisse zeigen hierbei, dass das vorgeschlagene IDS im Vergleich zu mehreren Benchmarking- und State-of-the-Art-Vorschlägen überdurchschnittliche Leistungen erbringt.The exponential growth of online services and the data volume transferred over the communication networks raises the need to change the structure of traditional networks to a new paradigm that adapts to the development’s demands. Software- Defined Networking (SDN) is an advanced network architecture aiming to evolve and transform the traditional network into a more flexible network that responds to the new requirements. In contrast to the traditional network, SDN allows decoupling of the control and data planes functionalities to monitor, configure, and optimize network resources efficiently. It has a centralized controller with a global network view to manage its resources using programmable interfaces. The central control brings new security vulnerabilities and acts as a single point of failure, which the malicious user might exploit to disrupt the network functionality. Thus, the attacker launches massive traffic known as Distributed Denial of Service (DDoS) attack from the SDN infrastructure layer towards the controller. This DDoS attack leads to saturation of control channel bandwidth and destroys the controller resources. Furthermore, the SDN architecture inherits some attacks types from the traditional networks. Therefore, the attacker forges the packets to appear benign and then targets the traditional DDoS objectives such as hosts, servers, applications, routers. This work observes the behavior of malicious users. It then presents an Intrusion Detection System (IDS) to safeguard the SDN environment against DDoS attacks. The IDS considers three approaches to obtain sufficient feedback about the ongoing traffic through the SDN architecture: the information from an external device, the OpenFlow channel, and the flow table. Therefore, the proposed IDS consists of three components; Inspector Device prevents the malicious users from launching the saturation attack towards the SDN controller. Convolutional Neural Network (CNN) Component employs the One- Dimensional Convolutional Neural Networks (1D-CNN) to analyze the controller’s traffic through the OpenFlow Channel. The Deep Learning Algorithm (DLA) component employs Recurrent Neural Networks (RNN) to detect the inherited DDoS attacks. The IDS also supports distinguishing between malicious and benign users as a new countermeasure. At the end of this work, the network emulator Mininet and the programming language python model all the proposed components to test their feasibility. The simulation results demonstrate that the proposed IDS outperforms compared several benchmarking and state-of-the-art suggestions

    New Anomaly Network Intrusion Detection System in Cloud Environment Based on Optimized Back Propagation Neural Network Using Improved Genetic Algorithm

    Get PDF
    Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over an open environment (Internet), this lead to different matters related to the security and privacy in cloud computing. Thus, defending network accessible Cloud resources and services from various threats and attacks is of great concern. To address this issue, it is essential to create an efficient and effective Network Intrusion System (NIDS) to detect both outsider and insider intruders with high detection precision in the cloud environment. NIDS has become popular as an important component of the network security infrastructure, which detects malicious activities by monitoring network traffic. In this work, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely, Back Propagation Neural Network (BPNN) using an Improved Genetic Algorithm (IGA). Genetic Algorithm (GA) is improved through optimization strategies, namely Parallel Processing and Fitness Value Hashing, which reduce execution time, convergence time and save processing power. Since,  Learning rate and Momentum term are among the most relevant parameters that impact the performance of BPNN classifier, we have employed IGA to find the optimal or near-optimal values of these two parameters which ensure high detection rate, high accuracy and low false alarm rate. The CloudSim simulator 4.0 and DARPA’s KDD cup datasets 1999 are used for simulation. From the detailed performance analysis, it is clear that the proposed system called “ANIDS BPNN-IGA” (Anomaly NIDS based on BPNN and IGA) outperforms several state-of-art methods and it is more suitable for network anomaly detection
    corecore