739 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Reduced Complexity Optimal Hard Decision Fusion under Neyman-Pearson Criterion

    Get PDF
    Distributed detection is an important part of many of the applications like wireless sensor networks, cooperative spectrum sensing in the cognitive radio network. Traditionally optimal non-randomized hard decision fusion rule under Neyman Pearson(NP) criterion is exponential in complexity. But recently [4] this was solved using dynamic programming. As mentioned in [4] that decision fusion problem exhibits semi-monotonic property in a special case. We use this property in our simulations and eventually apply dynamic programming to solve the problem with further reduced complexity. Further, we study the e�ect of using multiple antennas at FC with reduced complexity rule

    Dynamic Spectrum Sharing in Cognitive Radio and Device-to-Device Systems

    Get PDF
    abstract: Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme. In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active number of SUs satisfying this constraint is random. Under different user distributions with the same mean number of SUs, the stochastic ordering of SU performance metrics including bit error rate (BER), outage probability, and ergodic capacity are made possible even without observing closed form expressions. Furthermore, a cooperation is assumed between primary and secondary networks, where those SUs exceeding the interference constraint facilitate PU’s transmission by relaying its signal. A fundamental performance trade-off between primary and secondary networks is observed, and it is illustrated that the proposed scheme outperforms non-cooperative underlay CR systems in the sense of system overall BER and sum achievable rate. Similar to conventional cellular networks, CR systems suffer from an overloaded receiver having to manage signals from a large number of users. To address this issue, D2D communications has been proposed, where direct transmission links are established between users in close proximity to offload the system traffic. Several new cooperative spectrum access policies are proposed allowing coexistence of multiple D2D pairs in order to improve the spectral efficiency. Despite the additional interference, it is shown that both the cellular user’s (CU) and the individual D2D user's achievable rates can be improved simultaneously when the number of D2D pairs is below a certain threshold, resulting in a significant multiplexing gain in the sense of D2D sum rate. This threshold is quantified for different policies using second order approximations for the average achievable rates for both the CU and the individual D2D user.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    On Power Allocation for Distributed Detection with Correlated Observations and Linear Fusion

    Full text link
    We consider a binary hypothesis testing problem in an inhomogeneous wireless sensor network, where a fusion center (FC) makes a global decision on the underlying hypothesis. We assume sensors observations are correlated Gaussian and sensors are unaware of this correlation when making decisions. Sensors send their modulated decisions over fading channels, subject to individual and/or total transmit power constraints. For parallel-access channel (PAC) and multiple-access channel (MAC) models, we derive modified deflection coefficient (MDC) of the test statistic at the FC with coherent reception.We propose a transmit power allocation scheme, which maximizes MDC of the test statistic, under three different sets of transmit power constraints: total power constraint, individual and total power constraints, individual power constraints only. When analytical solutions to our constrained optimization problems are elusive, we discuss how these problems can be converted to convex ones. We study how correlation among sensors observations, reliability of local decisions, communication channel model and channel qualities and transmit power constraints affect the reliability of the global decision and power allocation of inhomogeneous sensors
    corecore