1,858 research outputs found

    Climate Change and Critical Agrarian Studies

    Full text link
    Climate change is perhaps the greatest threat to humanity today and plays out as a cruel engine of myriad forms of injustice, violence and destruction. The effects of climate change from human-made emissions of greenhouse gases are devastating and accelerating; yet are uncertain and uneven both in terms of geography and socio-economic impacts. Emerging from the dynamics of capitalism since the industrial revolution — as well as industrialisation under state-led socialism — the consequences of climate change are especially profound for the countryside and its inhabitants. The book interrogates the narratives and strategies that frame climate change and examines the institutionalised responses in agrarian settings, highlighting what exclusions and inclusions result. It explores how different people — in relation to class and other co-constituted axes of social difference such as gender, race, ethnicity, age and occupation — are affected by climate change, as well as the climate adaptation and mitigation responses being implemented in rural areas. The book in turn explores how climate change – and the responses to it - affect processes of social differentiation, trajectories of accumulation and in turn agrarian politics. Finally, the book examines what strategies are required to confront climate change, and the underlying political-economic dynamics that cause it, reflecting on what this means for agrarian struggles across the world. The 26 chapters in this volume explore how the relationship between capitalism and climate change plays out in the rural world and, in particular, the way agrarian struggles connect with the huge challenge of climate change. Through a huge variety of case studies alongside more conceptual chapters, the book makes the often-missing connection between climate change and critical agrarian studies. The book argues that making the connection between climate and agrarian justice is crucial

    Rational development of stabilized cyclic disulfide redox probes and bioreductive prodrugs to target dithiol oxidoreductases

    Get PDF
    Countless biological processes allow cells to develop, survive, and proliferate. Among these, tightly balanced regulatory enzymatic pathways that can respond rapidly to external impacts maintain dynamic physiological homeostasis. More specifically, redox homeostasis broadly affects cellular metabolism and proliferation, with major contributions by thiol/disulfide oxidoreductase systems, in particular, the Thioredoxin Reductase Thioredoxin (TrxR/Trx) and the Glutathione Reductase-Glutathione-Glutaredoxin (GR/GSH/Grx) systems. These cascades drive vital cellular functions in many ways through signaling, regulating other proteins' activity by redox switches, and by stoichiometric reductant transfers in metabolism and antioxidant systems. Increasing evidence argues that there is a persistent alteration of the redox environment in certain pathological states, such as cancer, that heavily involve the Trx system: upregulation and/or overactivity of the Trx system may support or drive cancer progression, making both TrxR and Trx promising targets for anti-cancer drug development. Understanding the biochemical mechanisms and connections between certain redox cascades requires research tools that interact with them. The state-of-the-art genetic tools are mostly ratiometric reporters that measure reduced:oxidized ratios of selected redox pairs or the general thiol pool. However, the precise cellular roles of the central oxidoreductase systems, including TrxR and Trx, remain inaccessible due to the lack of probes to selectively measure turnover by either of these proteins. However, such probes would allow measuring their effective reductive activity apart from expression levels in native systems, including in cells, animals, or patient samples. They are also of high interest to identify chemical inhibitors for TrxR/Trx in cells and to validate their potential use as anti-cancer agents (to date, there is no selective cellular Trx inhibitor, and most known TrxR inhibitors were not comprehensively evaluated considering selectivity and potential off-targets). However, small molecule redox imaging tools are underdeveloped: their protein specificity, spectral properties, and applicability remain poorly precedented. This work aimed to address this opportunity gap and develop novel, small molecule diagnostic and therapeutic tools to selectively target the Trx system based on a modular trigger cargo design: artificial cyclic disulfide substrates (trigger) for oxidoreductases are tethered to molecular agents (cargo) such that the cargo’s activity is masked and is re-established only through reduction by a target protein. The rational design of these novel reduction sensors to target the cell's strongest disulfide-reducing enzymes was driven by the following principles: (i) cyclic disulfide triggers with stabilized ring systems were used to gain low reduction potentials that should resist reduction except by the strongest cellular reductases, such as Trx; and (ii) the cyclic topology also offers the potential for kinetic reversibility that should select for dithiol-type redox proteins over the cellular monothiol background. Creating imaging agents based on such two-component designs to selectively measure redox protein activity in native cells required to combine the correct trigger reducibility, probe activation kinetics, and imaging modalities and to consider the overall molecular architecture. The major prior art in this field has applied cyclic 5-membered disulfides (1,2 dithiolanes) as substrates for TrxR in a similar way to create such tools. However, this motif was described elsewhere as thermodynamically instable and was due to widely used for dynamic covalent cascade reactions. By comparing a novel 1,2 dithiolane-based probe to the state-of-the-art probes, including commercial TrxR sensors, by screening a conclusive assay panel of cellular TrxR modulations, I clarified that 1,2 dithiolanes are not selective substrates for TrxR in biological settings (Nat Commun 2022). Instead, aiming for more stable ring systems and thus more robust redox probes, during this work, I developed bicyclic 6 membered disulfides (piperidine fused 1,2 dithianes) with remarkably low reduction potentials. I showed that molecular probes using them as reduction sensors can be mostly processed by thioredoxins while being stable against reduction by GSH. The thermodynamically stabilized decalin like topology of the cis-annelated 1,2 dithianes requires particularly strong reductants to be cleaved. They also select for dithiol type redox proteins, like Trx, based on kinetic reversibility and offer fast cyclization due to the preorganization by annelation (JACS 2021). This work further expanded the system’s modularity with structural cores based on piperazine-fused 1,2 dithianes with the two amines allowing independent derivatization. Diagnostic tools using them as reduction sensors proved equally robust but with highly improved activation kinetics and were thus cellularly activated. Cellular studies evolved that they are substrates for both Trxs and their protein cousins Grxs, so measuring the cellular dithiol protein pool rather than solely Trx activity (preprint 2023). Finally, a trigger based on a slightly adapted reduction sensor, a desymmetrized 1,2 thiaselenane, was designed for selective reduction by TrxR’s selenol/thiol active site, then combined with a precipitating large Stokes’ shift fluorophore and a solubilizing group, to evolve the first selective probe RX1 to measure cellular TrxR activity, which even allowed high throughput inhibitor screening (Chem 2022). The central principle of this work was further advanced to therapeutic prodrugs based on the duocarmycin cargo (CBI) with tunable potency (JACS Au 2022) that can be used to create off-to-on therapeutic prodrugs. Such CBI prodrugs employing stabilized 1,2 dichalcogenide triggers proved to be cytotoxins that depend on Trx system activity in cells. They could further be exploited for cell-line dependent reductase activity profiling by screening their redox activation indices, the reduction-dependent part of total prodrug activation, in 177 cell lines. Beyond that, these prodrugs were well-tolerated in animals and showed anti-cancer efficacy in vivo in two distinct mouse tumor models (preprint 2022). Taken together, I introduced unique monothiol-resistant reducible motifs to target the cellular Trx system with chemocompatible units for each for TrxR and Trx/Grx, where the cyclic nature of the dichalcogenides avoids activation by GSH. By using them with distinct molecular cargos, I developed novel selective fluorescent reporter probes; and introduced a new class of bioreductive therapeutic constructs based on a common modular design. These were either applied to selectively measure cellular reductase activity or to deliver cytotoxic anti cancer agents in vivo. Ongoing work aims to differentiate between the two major redox effector proteins Trx and Grx, requiring additional layers of selectivity that may be addressed by tuned molecular recognition. The flexible use of various molecular cargos allows harnessing the same cellular redox machinery by either probes or prodrugs. This allows predictive conclusions from diagnostics to be directly translated into therapy and offers great potential for future adaptation to other enzyme classes and therapeutic venues.Die zelluläre Redox-Homöostase hängt von Thiol/Disulfid-Oxidoreduktasen ab, die den Stoffwechsel, die Proliferation und die antioxidative Antwort von Zellen beeinflussen. Die wichtigsten Netzwerke sind die Thioredoxin Reduktase-Thioredoxin (TrxR/Trx) und Glutathion Reduktase-Glutathion-Glutaredoxin (GR/GSH/Grx) Systeme, die über Redox-Schalter in Substratproteinen lebenswichtige zelluläre Funktionen steuern und so an der Redox-Regulation und -Signalübertragung beteiligt sind. Persistente Veränderungen des Redoxmilieus in pathologischen Zuständen, wie z. B. bei Krebs, sind in hohem Maße mit dem Trx-System verbunden. Eine Hochregulierung und/oder Überaktivität des Trx-Systems, die bei vielen Krebsarten auftreten, unterstützt zudem das Fortschreiten des Krebswachstums, was TrxR/Trx zu vielversprechenden Zielproteinen für die Entwicklung neuer Krebsmedikamente macht. Um die biochemischen Prozesse dahinter zu erforschen, sind spezielle Techniken zur Visualisierung und Messung enzymatischer Aktivität nötig. Die hierzu geeigneten, meist genetischen Sensoren messen ratiometrisch das Verhältnis reduzierter/oxidierter Spezies in zellulärem Umfeld oder spezifisch ausgewählte Redoxpaare. Die weitere Erforschung der exakten Funktion von TrxR/Trx und deren Substrate ist jedoch durch mangelnde Nachweismethoden limitiert. Diese sind außerdem zur Validierung chemischer Hemmstoffe für TrxR/Trx in Zellen und deren potenziellen Verwendung als Krebsmittel von großem Interesse. Bislang gibt es keinen selektiven zellulären Trx-Inhibitor und potenzielle Off-Target-Effekte der bekannten TrxR-Inhibitoren wurden nicht abschließend bewertet. Ziel dieser Arbeit ist die Entwicklung niedermolekularer, diagnostischer und therapeutischer Werkzeuge, die selektiv auf das Trx-System abzielen und auf einem modularen Trigger-Cargo Design basieren. Hierzu werden zyklische Disulfid-Substrate (Trigger) für Oxidoreduktasen so mit molekularen Wirkstoffen (Cargo) verknüpft, dass dabei die Wirkstoffaktivität maskiert, und erst nach Reduktion durch ein Zielprotein wiederhergestellt wird. Diese neuartigen, synthetischen Reduktionssensoren basieren auf den folgenden Grundprinzipien: (i) Zyklische Disulfide sind thermodynamisch stabilisiert und können nur durch die stärksten Reduktasen gespalten werden; und (ii) die zyklische Topologie ermöglicht die kinetische Reversibilität der zwei Thiol-Disulfid-Austauschreaktionen, die eine erste Reaktion mit Monothiolen, wie z. B. GSH, sofort umkehrt und so eine vollständige Reduktion verhindert. Die meisten früheren Arbeiten auf diesem Gebiet verwendeten ein zyklisches, fünfgliedriges Disulfid (1,2 Dithiolan) als Substrat für TrxR. Das gleiche Strukturmotiv wurde jedoch an anderer Stelle als thermodynamisch instabil beschrieben und aufgrund dieser Eigenschaft explizit für dynamische Kaskadenreaktionen verwendet. Deshalb vergleicht diese Arbeit zu Beginn einen neuen 1,2 Dithiolan basierten fluorogenen Indikator mit bestehenden, z. T. kommerziellen, Redox Sonden für TrxR in einer Reihe von Zellkultur-Experimenten unter Modulation der zellulären TrxR Aktivität und stellt so einen Widerspruch in der Literatur klar: 1,2 Dithiolane eignen sich nicht als selektive Substrate für TrxR, da sie labil sowohl gegen die Reduktion durch andere Redoxproteine, als auch gegen den Monothiol Hintergrund in Zellen sind (Nat. Commun. 2022). Als alternatives Strukturmotiv wird in dieser Arbeit ein bizyklisches sechsgliedriges Disulfid (anneliertes 1,2 Dithian) etabliert. Durch sein niedriges Reduktionspotenzial, also seine hohe Resistenz gegen Reduktion, werden molekulare Sonden basierend auf diesem 1,2 Dithian als Reduktionssensor fast ausschließlich von Trx aktiviert, nicht aber von TrxR oder GSH (JACS 2021). Dieses Kernmotiv bestimmt dabei die Reduzierbarkeit, und damit die Enzymspezifität, durch seine zyklische Natur und die Annelierung, auch unter Verwendung unterschiedlicher Farb-/Wirkstoffe. Auf dieser Grundlage konnte die molekulare Struktur durch einen weiteren Modifikationspunkt für die flexible Verwendung weiterer funktioneller Einheiten ergänzt werden. Obwohl zelluläre Studien ergaben, dass diese neuartigen 1,2 Dithian Einheiten in Zellen sowohl Trx als auch das strukturell verwandte Grx adressieren, sind die daraus resultierenden diagnostischen Moleküle wertvoll, um den katalytischen Umsatz zellulärer Dithiol-Reduktasen, der sogenannten Trx Superfamilie, selektiv anzuzeigen (Preprint 2023). Begünstigt durch das modulare Moleküldesign stellt diese Arbeit zudem das erste Reportersystem RX1 zum selektiven Nachweis der TrxR-Aktivität in Zellen vor. Es basiert auf der Verwendung eines zyklischen, unsymmetrischen Selenenylsulfid-Sensors (1,2 Thiaselenan), der selektiv von dem einzigartigen Selenolat der TrxR angegriffen wird, und dadurch letztlich nur von TrxR reduziert werden kann. RX1 eignete sich zudem für eine Hochdurchsatz-Validierung bestehender TrxR Inhibitoren und unterstreicht dadurch den kommerziellen Nutzen derartiger Diagnostika (Chem 2022). Das zentrale Trigger-Cargo Konzept dieser Arbeit wurde für therapeutische Zwecke weiterentwickelt und nutzt dabei den einzigartigen Wirkmechanismus der Duocarmycin-Naturstoffklasse (CBI) (JACS Au 2022) zur Entwicklung reduktiv aktivierbarer Therapeutika. CBI Prodrugs basierend auf stabilisierten Redox-Schaltern (1,2 Dithiane für Trx; 1,2 Thiaselenan für TrxR) reagierten signifikant auf TrxR-Modulation in Zellen. Sie wurden darüber hinaus durch das Referenzieren ihrer Aktivität gegenüber nicht-reduzierbaren Kontrollmoleküle für die Erstellung zelllinienabhängiger Profile der Reduktaseaktivität in 177 Zelllinien genutzt. Schließlich waren diese neuen Krebsmittel im Tiermodell gut verträglich und zeigten in zwei verschiedenen Mausmodellen eine krebshemmende Wirkung (Preprint 2022b). Zusammenfassend präsentiert diese Dissertation monothiol-resistente reduzierbare Trigger-Einheiten für das zelluläre Trx-System zur Entwicklung neuartiger, selektiver Reporter-Sonden, sowie eine neue Klasse reduktiv aktivierbarer Krebsmittel auf Basis eines adaptierbaren Trigger-Cargo Designs. Diese fanden entweder zur selektiven Messung zellulärer Proteinaktivität oder zum Einsatz als Antikrebsmittel Verwendung. Es wurden chemokompatible Motive sowohl für TrxR als auch für Trx/Grx identifiziert, wobei deren zyklische Natur eine Aktivierung durch GSH verhindert. Eine weitere Differenzierung zwischen den beiden Redox-Proteinen Trx und Grx und anderen Proteinen der Trx-Superfamilie erfordert eine zusätzliche Ebene der Selektierung, z. B. durch molekulare Erkennung, und ist Gegenstand laufender Arbeiten. Die flexible Verwendung verschiedener molekularer Wirkstoffe ermöglicht dabei die „Pipeline-Entwicklung“ von Diagnostika und Therapeutika, die von der zellulären Redox-Maschinerie analog umgesetzt werden, und dadurch Schlussfolgerungen aus der Diagnostik direkt auf eine Therapie übertragbar machen. Dies birgt großes Potenzial für künftige Entwicklungen bei einer potenziellen Übertragung des modularen Konzepts auf andere Enzymklassen und therapeutische Einsatzgebiete

    Summer/Fall 2023

    Get PDF

    Computer Vision and Architectural History at Eye Level:Mixed Methods for Linking Research in the Humanities and in Information Technology

    Get PDF
    Information on the history of architecture is embedded in our daily surroundings, in vernacular and heritage buildings and in physical objects, photographs and plans. Historians study these tangible and intangible artefacts and the communities that built and used them. Thus valuableinsights are gained into the past and the present as they also provide a foundation for designing the future. Given that our understanding of the past is limited by the inadequate availability of data, the article demonstrates that advanced computer tools can help gain more and well-linked data from the past. Computer vision can make a decisive contribution to the identification of image content in historical photographs. This application is particularly interesting for architectural history, where visual sources play an essential role in understanding the built environment of the past, yet lack of reliable metadata often hinders the use of materials. The automated recognition contributes to making a variety of image sources usable forresearch.<br/

    Next Generation Business Ecosystems: Engineering Decentralized Markets, Self-Sovereign Identities and Tokenization

    Get PDF
    Digital transformation research increasingly shifts from studying information systems within organizations towards adopting an ecosystem perspective, where multiple actors co-create value. While digital platforms have become a ubiquitous phenomenon in consumer-facing industries, organizations remain cautious about fully embracing the ecosystem concept and sharing data with external partners. Concerns about the market power of platform orchestrators and ongoing discussions on privacy, individual empowerment, and digital sovereignty further complicate the widespread adoption of business ecosystems, particularly in the European Union. In this context, technological innovations in Web3, including blockchain and other distributed ledger technologies, have emerged as potential catalysts for disrupting centralized gatekeepers and enabling a strategic shift towards user-centric, privacy-oriented next-generation business ecosystems. However, existing research efforts focus on decentralizing interactions through distributed network topologies and open protocols lack theoretical convergence, resulting in a fragmented and complex landscape that inadequately addresses the challenges organizations face when transitioning to an ecosystem strategy that harnesses the potential of disintermediation. To address these gaps and successfully engineer next-generation business ecosystems, a comprehensive approach is needed that encompasses the technical design, economic models, and socio-technical dynamics. This dissertation aims to contribute to this endeavor by exploring the implications of Web3 technologies on digital innovation and transformation paths. Drawing on a combination of qualitative and quantitative research, it makes three overarching contributions: First, a conceptual perspective on \u27tokenization\u27 in markets clarifies its ambiguity and provides a unified understanding of the role in ecosystems. This perspective includes frameworks on: (a) technological; (b) economic; and (c) governance aspects of tokenization. Second, a design perspective on \u27decentralized marketplaces\u27 highlights the need for an integrated understanding of micro-structures, business structures, and IT infrastructures in blockchain-enabled marketplaces. This perspective includes: (a) an explorative literature review on design factors; (b) case studies and insights from practitioners to develop requirements and design principles; and (c) a design science project with an interface design prototype of blockchain-enabled marketplaces. Third, an economic perspective on \u27self-sovereign identities\u27 (SSI) as micro-structural elements of decentralized markets. This perspective includes: (a) value creation mechanisms and business aspects of strategic alliances governing SSI ecosystems; (b) business model characteristics adopted by organizations leveraging SSI; and (c) business model archetypes and a framework for SSI ecosystem engineering efforts. The dissertation concludes by discussing limitations as well as outlining potential avenues for future research. These include, amongst others, exploring the challenges of ecosystem bootstrapping in the absence of intermediaries, examining the make-or-join decision in ecosystem emergence, addressing the multidimensional complexity of Web3-enabled ecosystems, investigating incentive mechanisms for inter-organizational collaboration, understanding the role of trust in decentralized environments, and exploring varying degrees of decentralization with potential transition pathways

    Data ethics : building trust : how digital technologies can serve humanity

    Get PDF
    Data is the magic word of the 21st century. As oil in the 20th century and electricity in the 19th century: For citizens, data means support in daily life in almost all activities, from watch to laptop, from kitchen to car, from mobile phone to politics. For business and politics, data means power, dominance, winning the race. Data can be used for good and bad, for services and hacking, for medicine and arms race. How can we build trust in this complex and ambiguous data world? How can digital technologies serve humanity? The 45 articles in this book represent a broad range of ethical reflections and recommendations in eight sections: a) Values, Trust and Law, b) AI, Robots and Humans, c) Health and Neuroscience, d) Religions for Digital Justice, e) Farming, Business, Finance, f) Security, War, Peace, g) Data Governance, Geopolitics, h) Media, Education, Communication. The authors and institutions come from all continents. The book serves as reading material for teachers, students, policy makers, politicians, business, hospitals, NGOs and religious organisations alike. It is an invitation for dialogue, debate and building trust! The book is a continuation of the volume “Cyber Ethics 4.0” published in 2018 by the same editors

    Digital Literacy Education in Welsh Primary and Secondary Schools from the 1960s to the Present

    Get PDF
    Digital technologies are imbued with ideologies that impact culture and society. These technologies are ubiquitous, pervasive, and central to how people communicate, consume information, and orchestrate their lives. Therefore, for people to fully understand the impact and influence of these technologies on their lives and engage with them and the digital environment in a critically informed way - digital literacy is an absolute and necessary requirement. However, we are not seeing digital literacy as standard. This study assesses: (1) Whether students are being sufficiently educated about how digital technologies use and affect them in a social, cultural, and ethical capacity; (2) Whether the programme content of digital literacy education (DLE) is primarily driven by neo-liberal economically driven government policies; and (3) How much influence private neo-liberal capitalistic enterprises have in determining the educational agenda of DLE? Qualitative data was collected via three focus group interviews and twenty-six semi-structured interviews which explored students, educational professionals, and government officials’ views of DLE in Wales. The data was thematically coded using critical discourse analysis, and analysed using theories developed in Herbert Marcuse’s 1964 publication One-Dimensional Man. The results indicated that DLE educational policy has broadened to include knowledge that extends beyond the teaching of purely mechanistic skills. However, a variety of factors were identified that impede their implementation. Additionally, it is argued that students’ mechanistic digital skills have been declining since the introduction of touch screen technologies into primary and secondary schools. Findings also indicated that educators main DLE focus was on preparing students for employment purposes, and the influence private neo-liberal capitalistic enterprises have in determining not only the educational agenda of DLE, but education in general is profound, and has accelerated exponentially since the COVID-19 imposed lockdowns

    Functional surfactants as energy valves in gradient structures of organic inorganic perovskite structures

    Get PDF
    Hybrid perovskites are considered one of the most promising semiconductor materials of our time. Their ionic composition enables low-cost and simple production at low temperatures, making them a highly demanded semiconductor for photovoltaics, but also optoelectronic applications such as LEDs, lasers or photodiodes. Their hybrid nature enables the integration of organic cations, which brings a wide range of possible materials. The classical perovskite structure permits the incorporation of small organic cations. If the given space in the structure is exceeded by the organic molecule, a layered crystalline phase with alternating arrangement of organic cations and inorganic 2D lead bromide layers is formed. This allows the use of a great variety of organic cations which become an integral part of the semiconducting material. Thus, molecules can be chosen that contribute to the functionality of the crystalline phase, for example, by using conductive conjugated π systems. Energy transfer between the components of the layered phases becomes possible and extraordinary electronic and optical properties can result. The aim of this thesis was the development of functional surfactants for the synthesis of hybrid lead halide perovskite particles with a special switchable feature. The switching was intended to introduce an energy valve into the phases, which could be switched by external stimuli (i.e. light or chemically). The obtained phases should be investigated for structural, optical and electronic properties, both before and after a switching of the ligands. For this purpose, ligands based on photoswitchable azobenzene, redox active ferrocene and conductive five-ring heterocycles were developed and their functionality was studied before and after incorporation into 2D layered hybrid perovskite phases. It was found that electronic exchange between the organic molecule and the perovskite framework is present in all the crystal phases obtained. Thus, the molecules are more than just a structural component of the phases, but contribute to the electronic properties. The oxidation of ferrocene in particular made it possible to integrate a switchable energy valve. The decisive factor is the change in the energy of the molecular orbitals, which was achieved by the oxidation. Thus, the optical and electronic properties of the semiconductor could be greatly changed. This work provides a comprehensive basis for the study of semiconducting particles with switchable ligands. Especially promising are redox-active hybrid perovskites, which emerge as a completely new class from these investigations

    Embodied interaction with guitars: instruments, embodied practices and ecologies

    Get PDF
    In this thesis I investigate the embodied performance preparation practices of guitarists to design and develop tools to support them. To do so, I employ a series of human-centred design methodologies such as design ethnography, participatory design, and soma design. The initial ethnographic study I conducted involved observing guitarists preparing to perform individually and with their bands in their habitual places of practice. I also interviewed these musicians on their preparation activities. Findings of this study allowed me to chart an ecology of tools and resources employed in the process, as well as pinpoint a series of design opportunities for augmenting guitars, namely supporting (1) encumbered interactions, (2) contextual interactions, and (3) connected interactions. Going forward with the design process I focused on remediating encumbered interactions that emerge during performance preparation with multimedia devices, particularly during instrumental transcription. I then prepared and ran a series of hands-on co-design workshops with guitarists to discuss five media controller prototypes, namely, instrument-mounted controls, pedal-based controls, voice-based controls, gesture-based controls, and “music-based” controls. This study highlighted the value that guitarists give to their guitars and to their existing practice spaces, tools, and resources by critically reflecting on how these interaction modalities would support or disturb their existing embodied preparation practices with the instrument. In parallel with this study, I had the opportunity to participate in a soma design workshop (and then prepare my own) in which I harnessed my first-person perspective of guitar playing to guide the design process. By exploring a series of embodied ideation and somatic methods, as well as materials and sensors across several points of contact between our bodies and the guitar, we collaboratively ideated a series of design concepts for guitar across both workshops, such as a series of breathing guitars, stretchy straps, and soft pedals. I then continued to develop and refine the Stretchy Strap concept into a guitar strap augmented with electronic textile stretch sensors to harness it as an embodied media controller to remediate encumbered interaction during musical transcription with guitar when using secondary multimedia resources. The device was subsequently evaluated by guitarists at a home practicing space, providing insights on nuanced aspects of its embodied use, such as how certain media control actions like play and pause are better supported by the bodily gestures enacted with the strap, whilst other actions, like rewinding the play back or setting in and out points for a loop are better supported by existing peripherals like keyboards and mice, as these activities do not necessarily happen in the flow of the embodied practice of musical transcription. Reflecting on the overall design process, a series of considerations are extracted for designing embodied interactions with guitars, namely, (1) considering the instrument and its potential for augmentation, i.e., considering the shape of the guitar, its material and its cultural identity, (2) considering the embodied practices with the instrument, i.e., the body and the subjective felt experience of the guitarist during their skilled embodied practices with the instrument and how these determine its expert use according to a particular instrumental tradition and/or musical practice, and (3) considering the practice ecology of the guitarist, i.e., the tools, resources, and spaces they use according to their practice
    • …
    corecore