396 research outputs found

    Learning to detect chest radiographs containing lung nodules using visual attention networks

    Get PDF
    Machine learning approaches hold great potential for the automated detection of lung nodules in chest radiographs, but training the algorithms requires vary large amounts of manually annotated images, which are difficult to obtain. Weak labels indicating whether a radiograph is likely to contain pulmonary nodules are typically easier to obtain at scale by parsing historical free-text radiological reports associated to the radiographs. Using a repositotory of over 700,000 chest radiographs, in this study we demonstrate that promising nodule detection performance can be achieved using weak labels through convolutional neural networks for radiograph classification. We propose two network architectures for the classification of images likely to contain pulmonary nodules using both weak labels and manually-delineated bounding boxes, when these are available. Annotated nodules are used at training time to deliver a visual attention mechanism informing the model about its localisation performance. The first architecture extracts saliency maps from high-level convolutional layers and compares the estimated position of a nodule against the ground truth, when this is available. A corresponding localisation error is then back-propagated along with the softmax classification error. The second approach consists of a recurrent attention model that learns to observe a short sequence of smaller image portions through reinforcement learning. When a nodule annotation is available at training time, the reward function is modified accordingly so that exploring portions of the radiographs away from a nodule incurs a larger penalty. Our empirical results demonstrate the potential advantages of these architectures in comparison to competing methodologies

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT

    Get PDF
    Lung cancer is a major cause for cancer-related deaths. The detection of pulmonary cancer in the early stages can highly increase survival rate. Manual delineation of lung nodules by radiologists is a tedious task. We developed a novel computer-aided decision support system for lung nodule detection based on a 3D Deep Convolutional Neural Network (3DDCNN) for assisting the radiologists. Our decision support system provides a second opinion to the radiologists in lung cancer diagnostic decision making. In order to leverage 3-dimensional information from Computed Tomography (CT) scans, we applied median intensity projection and multi-Region Proposal Network (mRPN) for automatic selection of potential regionof-interests. Our Computer Aided Diagnosis (CAD) system has been trained and validated using LUNA16, ANODE09, and LIDC-IDR datasets; the experiments demonstrate the superior performance of our system, attaining sensitivity, specificity, AUROC, accuracy, of 98.4%, 92%, 96% and 98.51% with 2.1 FPs per scan. We integrated cloud computing, trained and validated our Cloud-Based 3DDCNN on the datasets provided by Shanghai Sixth People’s Hospital, as well as LUNA16, ANODE09, and LIDC-IDR. Our system outperformed the state-of-the-art systems and obtained an impressive 98.7% sensitivity at 1.97 FPs per scan. This shows the potentials of deep learning, in combination with cloud computing, for accurate and efficient lung nodule detection via CT imaging, which could help doctors and radiologists in treating lung cancer patients

    Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for Small Organ Segmentation

    Full text link
    We aim at segmenting small organs (e.g., the pancreas) from abdominal CT scans. As the target often occupies a relatively small region in the input image, deep neural networks can be easily confused by the complex and variable background. To alleviate this, researchers proposed a coarse-to-fine approach, which used prediction from the first (coarse) stage to indicate a smaller input region for the second (fine) stage. Despite its effectiveness, this algorithm dealt with two stages individually, which lacked optimizing a global energy function, and limited its ability to incorporate multi-stage visual cues. Missing contextual information led to unsatisfying convergence in iterations, and that the fine stage sometimes produced even lower segmentation accuracy than the coarse stage. This paper presents a Recurrent Saliency Transformation Network. The key innovation is a saliency transformation module, which repeatedly converts the segmentation probability map from the previous iteration as spatial weights and applies these weights to the current iteration. This brings us two-fold benefits. In training, it allows joint optimization over the deep networks dealing with different input scales. In testing, it propagates multi-stage visual information throughout iterations to improve segmentation accuracy. Experiments in the NIH pancreas segmentation dataset demonstrate the state-of-the-art accuracy, which outperforms the previous best by an average of over 2%. Much higher accuracies are also reported on several small organs in a larger dataset collected by ourselves. In addition, our approach enjoys better convergence properties, making it more efficient and reliable in practice.Comment: Accepted to CVPR 2018 (10 pages, 6 figures

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    Lung nodules identification in CT scans using multiple instance learning.

    Get PDF
    Computer Aided Diagnosis (CAD) systems for lung nodules diagnosis aim to classify nodules into benign or malignant based on images obtained from diverse imaging modalities such as Computer Tomography (CT). Automated CAD systems are important in medical domain applications as they assist radiologists in the time-consuming and labor-intensive diagnosis process. However, most available methods require a large collection of nodules that are segmented and annotated by radiologists. This process is labor-intensive and hard to scale to very large datasets. More recently, some CAD systems that are based on deep learning have emerged. These algorithms do not require the nodules to be segmented, and radiologists need to only provide the center of mass of each nodule. The training image patches are then extracted from volumes of fixed-sized centered at the provided nodule\u27s center. However, since the size of nodules can vary significantly, one fixed size volume may not represent all nodules effectively. This thesis proposes a Multiple Instance Learning (MIL) approach to address the above limitations. In MIL, each nodule is represented by a nested sequence of volumes centered at the identified center of the nodule. We extract one feature vector from each volume. The set of features for each nodule are combined and represented by a bag. Next, we investigate and adapt some existing algorithms and develop new ones for this application. We start by applying benchmark MIL algorithms to traditional Gray Level Co-occurrence Matrix (GLCM) engineered features. Then, we design and train simple Convolutional Neural Networks (CNNs) to learn and extract features that characterize lung nodules. These extracted features are then fed to a benchmark MIL algorithm to learn a classification model. Finally, we develop new algorithms (MIL-CNN) that combine feature learning and multiple instance classification in a single network. These algorithms generalize the CNN architecture to multiple instance data. We design and report the results of three experiments applied on both generative (GLCM) and learned (CNN) features using two datasets (The Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) \cite{armato2011lung} and the National Lung Screening Trial (NLST) \cite{national2011reduced}). Two of these experiments perform five-fold cross-validations on the same dataset (NLST or LIDC). The third experiment trains the algorithms on one collection (NLST dataset) and tests it on the other (LIDC dataset). We designed our experiments to compare the different features, compare MIL versus Single Instance Learning (SIL) where a single feature vector represents a nodule, and compare our proposed end-to-end MIL approaches to existing benchmark MIL methods. We demonstrate that our proposed MIL-CNN frameworks are more accurate for the lung nodules diagnosis task. We also show that MIL representation achieves better results than SIL applied on the ground truth region of each nodule

    Repeatability of two semi-automatic artificial intelligence approaches for tumor segmentation in PET

    Get PDF
    Background: Positron emission tomography (PET) is routinely used for cancer staging and treatment follow-up. Metabolic active tumor volume (MATV) as well as total MATV (TMATV—including primary tumor, lymph nodes and metastasis) and/or total lesion glycolysis derived from PET images have been identified as prognostic factor or for the evaluation of treatment efficacy in cancer patients. To this end, a segmentation approach with high precision and repeatability is important. However, the implementation of a repeatable and accurate segmentation algorithm remains an ongoing challenge. Methods: In this study, we compare two semi-automatic artificial intelligence (AI)-based segmentation methods with conventional semi-automatic segmentation approaches in terms of repeatability. One segmentation approach is based on a textural feature (TF) segmentation approach designed for accurate and repeatable segmentation of primary tumors and metastasis. Moreover, a convolutional neural network (CNN) is trained. The algorithms are trained, validated and tested using a lung cancer PET dataset. The segmentation accuracy of both segmentation approaches is compared using the Jaccard coefficient (JC). Additionally, the approaches are externally tested on a fully independent test–retest dataset. The repeatability of the methods is compared with those of two majority vote (MV2, MV3) approaches, 41%SUVMAX, and a SUV > 4 segmentation (SUV4). Repeatability is assessed with test–retest coefficients (TRT%) and intraclass correlation coefficient (ICC). An ICC > 0.9 was regarded as representing excellent repeatability. Results: The accuracy of the segmentations with the reference segmentation was good (JC median TF: 0.7, CNN: 0.73). Both segmentation approaches outperformed most other conventional segmentation methods in terms of test–retest coefficient (TRT% mean: TF: 13.0%, CNN: 13.9%, MV2: 14.1%, MV3: 28.1%, 41%SUVMAX: 28.1%, SUV4: 18.1%) and ICC (TF: 0.98, MV2: 0.97, CNN: 0.99, MV3: 0.73, SUV4: 0.81, and 41%SUVMAX: 0.68). Conclusion: The semi-automatic AI-based segmentation approaches used in this study provided better repeatability than conventional segmentation approaches. Moreover, both algorithms lead to accurate segmentations for both primary tumors as well as metastasis and are therefore good candidates for PET tumor segmentation

    Deep learning method for aortic root detection

    Get PDF
    Background: Computed tomography angiography (CTA) is a preferred imaging technique for a wide range of vascular diseases. However, extensive manual analysis is required to detect and identify several anatomical landmarks for clinical application. This study demonstrates the feasibility of a fully automatic method for detecting the aortic root, which is a key anatomical landmark in this type of procedure. The approach is based on the use of deep learning techniques that attempt to mimic expert behavior. Methods: A total of 69 CTA scans (39 for training and 30 for validation) with different pathology types were selected to train the network. Furthermore, a total of 71 CTA scans were selected independently and applied as the test set to assess their performance. Results: The accuracy was evaluated by comparing the locations marked by the method with benchmark locations (which were manually marked by two experts). The interobserver error was 4.6 ± 2.3 mm. On an average, the differences between the locations marked by the two experts and those detected by the computer were 6.6 ± 3.0 mm and 6.8 ± 3.3 mm, respectively, when calculated using the test set. Conclusions: From an analysis of these results, we can conclude that the proposed method based on pre-trained CNN models can accurately detect the aortic root in CTA images without prior segmentationThis work was partially financed by Consellería de Cultura, Educación e Universidade (reference 2019–2021, ED431C 2018/19)S
    corecore