3,912 research outputs found

    Fleet readiness : stocking spare parts and high-tech assets

    Get PDF
    We consider a maintenance shop that is responsible for the availability of a eet of assets, e.g., trains. Unavailability of assets may be due to active maintenance time or unavailability of spare parts. Both spare assets and spare components may be stocked in order to ensure a certain percentage of eet readiness (e.g., 95%), i.e., having sucient assets available for the primary process (e.g., running a train schedule). This is dierent from guaranteeing a certain average availability, as is typically done in the literature on spare parts inventories. We analyse the corresponding system, assuming continuous review and base stock control. We propose an algorithm, based on a marginal analysis approach, to solve the optimization problem of minimizing holding costs for spare assets and spare parts. Since the problem is not item separable, even marginal analysis is time consuming, but we show how to eciently solve this. Using a numerical experiment, we show that our algorithm generally leads to a solution that is close to optimal, and we show that our algorithm is much faster than an existing algorithm for a closely related problem

    Analysis and modeling of power supply induced jitter for high speed driver and low dropout voltage regulator

    Get PDF
    ”With the scaling of power supply voltage levels and improving trans-conductance of drivers, the sensitivity of drivers to power supply induced delays has increased. The power supply induced jitter (PSIJ) has become one of the major concerns for high-speed system. In this work, the PSIJ analysis and modeling method are proposed for high speed drivers and the system with on-die low dropout (LDO) voltage regulator. In addition, a jitter-aware target impedance concept is proposed for power distribution network (PDN) design to correlate the PSIJ with PDN parasitic. The proposed PSIJ analysis model is based on the driver power supply rejection ratio (PSRR) response, transition edge slope and the propagation delay. It is demonstrated that the proposed model can be generalized for different type of drivers. Following the proposed PSIJ model, a method for improving the PSIJ simulation accuracy in the input/output buffer information (IBIS) model is also proposed. A PSIJ analysis method is also proposed for system with on-die LDO. The approach relies on separate analysis of the LDO block PSRR response and the buffer block PSIJ sensitivity. This procedure allows designer to evaluate the system PSIJ with fewer and faster simulations. For the jitter-aware target impedance, a systematic procedure to develop the target impedance curves is formulated and developed for common CMOS buffer circuits. Given the transient IC switching current and the jitter specification, multiple target impedance curves can be defined for a specific circuit. The proposed design procedure can largely relieve over-constrain in the PDN designed based on the original target impedance definition”--Abstract, page iv

    The selection and evaluation of a sensory technology for interaction in a warehouse environment

    Get PDF
    In recent years, Human-Computer Interaction (HCI) has become a significant part of modern life as it has improved human performance in the completion of daily tasks in using computerised systems. The increase in the variety of bio-sensing and wearable technologies on the market has propelled designers towards designing more efficient, effective and fully natural User-Interfaces (UI), such as the Brain-Computer Interface (BCI) and the Muscle-Computer Interface (MCI). BCI and MCI have been used for various purposes, such as controlling wheelchairs, piloting drones, providing alphanumeric inputs into a system and improving sports performance. Various challenges are experienced by workers in a warehouse environment. Because they often have to carry objects (referred to as hands-full) it is difficult to interact with traditional devices. Noise undeniably exists in some industrial environments and it is known as a major factor that causes communication problems. This has reduced the popularity of using verbal interfaces with computer applications, such as Warehouse Management Systems. Another factor that effects the performance of workers are action slips caused by a lack of concentration during, for example, routine picking activities. This can have a negative impact on job performance and allow a worker to incorrectly execute a task in a warehouse environment. This research project investigated the current challenges workers experience in a warehouse environment and the technologies utilised in this environment. The latest automation and identification systems and technologies are identified and discussed, specifically the technologies which have addressed known problems. Sensory technologies were identified that enable interaction between a human and a computerised warehouse environment. Biological and natural behaviours of humans which are applicable in the interaction with a computerised environment were described and discussed. The interactive behaviours included the visionary, auditory, speech production and physiological movement where other natural human behaviours such paying attention, action slips and the action of counting items were investigated. A number of modern sensory technologies, devices and techniques for HCI were identified with the aim of selecting and evaluating an appropriate sensory technology for MCI. iii MCI technologies enable a computer system to recognise hand and other gestures of a user, creating means of direct interaction between a user and a computer as they are able to detect specific features extracted from a specific biological or physiological activity. Thereafter, Machine Learning (ML) is applied in order to train a computer system to detect these features and convert them to a computer interface. An application of biomedical signals (bio-signals) in HCI using a MYO Armband for MCI is presented. An MCI prototype (MCIp) was developed and implemented to allow a user to provide input to an HCI, in a hands-free and hands-full situation. The MCIp was designed and developed to recognise the hand-finger gestures of a person when both hands are free or when holding an object, such a cardboard box. The MCIp applies an Artificial Neural Network (ANN) to classify features extracted from the surface Electromyography signals acquired by the MYO Armband around the forearm muscle. The MCIp provided the results of data classification for gesture recognition to an accuracy level of 34.87% with a hands-free situation. This was done by employing the ANN. The MCIp, furthermore, enabled users to provide numeric inputs to the MCIp system hands-full with an accuracy of 59.7% after a training session for each gesture of only 10 seconds. The results were obtained using eight participants. Similar experimentation with the MYO Armband has not been found to be reported in any literature at submission of this document. Based on this novel experimentation, the main contribution of this research study is a suggestion that the application of a MYO Armband, as a commercially available muscle-sensing device on the market, has the potential as an MCI to recognise the finger gestures hands-free and hands-full. An accurate MCI can increase the efficiency and effectiveness of an HCI tool when it is applied to different applications in a warehouse where noise and hands-full activities pose a challenge. Future work to improve its accuracy is proposed

    A smoothing replenishment policy with endogenous lead times.

    Get PDF
    We consider a two echelon supply chain consisting of a single retailer and a single manufacturer. Inventory control policies at the retailer level often transmit customer demand variability to the manufacturer, sometimes even in an amplified form (known as the bullwhip effect). When the manufacturer produces in a make-to-order fashion though, he prefers a smooth order pattern. But dampening the variability in orders inflates the retailer's safety stock due to the increased variance of the retailers inventory levels. We can turn this issue of conflicting objectives into a win-win situation for both supply chain echelons when we treat the lead time as an endogenous variable. A less variable order pattern generates shorter and less variable (production/replenishment) lead times, introducing a compensating effect on the retailer's safety stock. We show that by including endogenous lead times, the order pattern can be smoothed to a considerable extent without increasing stock levels.Bullwhip effect; Demand; endogenous lead times; Fashion; Inventory; Inventory control; Markov processes; Order; Policy; Queueing; Research; Safety stock; Smoothing; Supply chain; Supply chain management; Time; Variability; Variance;

    Learning an Inventory Control Policy with General Inventory Arrival Dynamics

    Full text link
    In this paper we address the problem of learning and backtesting inventory control policies in the presence of general arrival dynamics -- which we term as a quantity-over-time arrivals model (QOT). We also allow for order quantities to be modified as a post-processing step to meet vendor constraints such as order minimum and batch size constraints -- a common practice in real supply chains. To the best of our knowledge this is the first work to handle either arbitrary arrival dynamics or an arbitrary downstream post-processing of order quantities. Building upon recent work (Madeka et al., 2022) we similarly formulate the periodic review inventory control problem as an exogenous decision process, where most of the state is outside the control of the agent. Madeka et al. (2022) show how to construct a simulator that replays historic data to solve this class of problem. In our case, we incorporate a deep generative model for the arrivals process as part of the history replay. By formulating the problem as an exogenous decision process, we can apply results from Madeka et al. (2022) to obtain a reduction to supervised learning. Finally, we show via simulation studies that this approach yields statistically significant improvements in profitability over production baselines. Using data from an ongoing real-world A/B test, we show that Gen-QOT generalizes well to off-policy data

    Smart digital twin for ZDM-based job-shop scheduling

    Full text link
    [EN] The growing digitization of manufacturing processes is revolutionizing the production job-shop by leading it toward the Smart Manufacturing (SM) paradigm. For a process to be smart, it is necessary to combine a given blend of data technologies, information and knowledge that enable it to perceive its environment and to autonomously perform actions that maximize its success possibilities in its assigned tasks. Of all the different ways leading to this transformation, both the generation of virtual replicas of processes and applying artificial intelligence (AI) techniques provide a wide range of possibilities whose exploration is today a far from negligible sources of opportunities to increase industrial companies¿ competitiveness. As a complex manufacturing process, production order scheduling in the job-shop is a necessary scenario to act by implementing these technologies. This research work considers an initial conceptual smart digital twin (SDT) framework for scheduling job-shop orders in a zero-defect manufacturing (ZDM) environment. The SDT virtually replicates the job-shop scheduling issue to simulate it and, based on the deep reinforcement learning (DRL) methodology, trains a prescriber agent and a process monitor. This simulation and training setting will facilitate analyses, optimization, defect and failure avoidance and, in short, decision making, to improve job-shop scheduling.The research that led to these results received funding from the European Union H2020 Programme with grant agreement No. 825631 Zero-Defect Manufacturing Platform (ZDMP) and Grant agreement No. 958205 Industrial Data Services for Quality Control in Smart Manufacturing (i4Q), and from the Spanish Ministry of Science, Innovation and Universities with Grant Agreement RTI2018-101344-B-I00 "Optimisation of zero-defects production technologies enabling supply chains 4.0 (CADS4.0)"Serrano Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart digital twin for ZDM-based job-shop scheduling. IEEE. 510-515. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.948847351051

    AN OVERVIEW OF DEEP LEARNING TECHNIQUES FOR SHORT-TERM ELECTRICITY LOAD FORECASTING

    Get PDF
    This paper presents an overview of some Deep Learning (DL) techniques applicable to forecasting electricity consumptions, especially in the short-term horizon. The paper introduced key parts of four DL architectures including the RNN, LSTM, CNN and SAE, which are recently adopted in implementing Short-term (electricity) Load Forecasting problems. It further presented a model approach for solving such problems. The eventual implication of the study is to present an insightful direction about concepts of the DL methods for forecasting electricity loads in the short-term period, especially to a potential researcher in quest of solving similar problems
    corecore