9,202 research outputs found

    Structure-Based Bayesian Sparse Reconstruction

    Full text link
    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is relatively low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at a low sparsity rate.Comment: 29 pages, 15 figures, accepted in IEEE Transactions on Signal Processing (July 2012

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005

    Off-the-Grid Line Spectrum Denoising and Estimation with Multiple Measurement Vectors

    Full text link
    Compressed Sensing suggests that the required number of samples for reconstructing a signal can be greatly reduced if it is sparse in a known discrete basis, yet many real-world signals are sparse in a continuous dictionary. One example is the spectrally-sparse signal, which is composed of a small number of spectral atoms with arbitrary frequencies on the unit interval. In this paper we study the problem of line spectrum denoising and estimation with an ensemble of spectrally-sparse signals composed of the same set of continuous-valued frequencies from their partial and noisy observations. Two approaches are developed based on atomic norm minimization and structured covariance estimation, both of which can be solved efficiently via semidefinite programming. The first approach aims to estimate and denoise the set of signals from their partial and noisy observations via atomic norm minimization, and recover the frequencies via examining the dual polynomial of the convex program. We characterize the optimality condition of the proposed algorithm and derive the expected convergence rate for denoising, demonstrating the benefit of including multiple measurement vectors. The second approach aims to recover the population covariance matrix from the partially observed sample covariance matrix by motivating its low-rank Toeplitz structure without recovering the signal ensemble. Performance guarantee is derived with a finite number of measurement vectors. The frequencies can be recovered via conventional spectrum estimation methods such as MUSIC from the estimated covariance matrix. Finally, numerical examples are provided to validate the favorable performance of the proposed algorithms, with comparisons against several existing approaches.Comment: 14 pages, 10 figure

    Bispectrum Inversion with Application to Multireference Alignment

    Full text link
    We consider the problem of estimating a signal from noisy circularly-translated versions of itself, called multireference alignment (MRA). One natural approach to MRA could be to estimate the shifts of the observations first, and infer the signal by aligning and averaging the data. In contrast, we consider a method based on estimating the signal directly, using features of the signal that are invariant under translations. Specifically, we estimate the power spectrum and the bispectrum of the signal from the observations. Under mild assumptions, these invariant features contain enough information to infer the signal. In particular, the bispectrum can be used to estimate the Fourier phases. To this end, we propose and analyze a few algorithms. Our main methods consist of non-convex optimization over the smooth manifold of phases. Empirically, in the absence of noise, these non-convex algorithms appear to converge to the target signal with random initialization. The algorithms are also robust to noise. We then suggest three additional methods. These methods are based on frequency marching, semidefinite relaxation and integer programming. The first two methods provably recover the phases exactly in the absence of noise. In the high noise level regime, the invariant features approach for MRA results in stable estimation if the number of measurements scales like the cube of the noise variance, which is the information-theoretic rate. Additionally, it requires only one pass over the data which is important at low signal-to-noise ratio when the number of observations must be large

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness
    • …
    corecore