476 research outputs found

    Numerical Computation of Rank-One Convex Envelopes

    Get PDF
    We describe an algorithm for the numerical computation of the rank-one convex envelope of a function f:\MM^{m\times n}\rightarrow\RR. We prove its convergence and an error estimate in L∞

    On algebras of holomorphic functions of a given type

    Get PDF
    We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally mm-convex Fr\'echet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem.Comment: 30 page

    Mixed Volume Techniques for Embeddings of Laman Graphs

    Get PDF
    Determining the number of embeddings of Laman graph frameworks is an open problem which corresponds to understanding the solutions of the resulting systems of equations. In this paper we investigate the bounds which can be obtained from the viewpoint of Bernstein's Theorem. The focus of the paper is to provide the methods to study the mixed volume of suitable systems of polynomial equations obtained from the edge length constraints. While in most cases the resulting bounds are weaker than the best known bounds on the number of embeddings, for some classes of graphs the bounds are tight.Comment: Thorough revision of the first version. (13 pages, 4 figures

    Error bounds for monomial convexification in polynomial optimization

    Get PDF
    Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of [0,1]n[0,1]^n. This implies additive error bounds for relaxing a polynomial optimization problem by convexifying each monomial separately. Our main error bounds depend primarily on the degree of the monomial, making them easy to compute. Since monomial convexification studies depend on the bounds on the associated variables, in the second part, we conduct an error analysis for a multilinear monomial over two different types of box constraints. As part of this analysis, we also derive the convex hull of a multilinear monomial over [−1,1]n[-1,1]^n.Comment: 33 pages, 2 figures, to appear in journa

    Explicit convex and concave envelopes through polyhedral subdivisions with Unstable Equilibria

    Get PDF
    In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of concave-extendable supermodular functions and the convex envelopes of disjunctive convex functions.
    • …
    corecore