3,064 research outputs found

    A Convex Cycle-based Degradation Model for Battery Energy Storage Planning and Operation

    Full text link
    A vital aspect in energy storage planning and operation is to accurately model its operational cost, which mainly comes from the battery cell degradation. Battery degradation can be viewed as a complex material fatigue process that based on stress cycles. Rainflow algorithm is a popular way for cycle identification in material fatigue process, and has been extensively used in battery degradation assessment. However, the rainflow algorithm does not have a closed form, which makes the major difficulty to include it in optimization. In this paper, we prove the rainflow cycle-based cost is convex. Convexity enables the proposed degradation model to be incorporated in different battery optimization problems and guarantees the solution quality. We provide a subgradient algorithm to solve the problem. A case study on PJM regulation market demonstrates the effectiveness of the proposed degradation model in maximizing the battery operating profits as well as extending its lifetime

    Using Battery Storage for Peak Shaving and Frequency Regulation: Joint Optimization for Superlinear Gains

    Full text link
    We consider using a battery storage system simultaneously for peak shaving and frequency regulation through a joint optimization framework which captures battery degradation, operational constraints and uncertainties in customer load and regulation signals. Under this framework, using real data we show the electricity bill of users can be reduced by up to 15\%. Furthermore, we demonstrate that the saving from joint optimization is often larger than the sum of the optimal savings when the battery is used for the two individual applications. A simple threshold real-time algorithm is proposed and achieves this super-linear gain. Compared to prior works that focused on using battery storage systems for single applications, our results suggest that batteries can achieve much larger economic benefits than previously thought if they jointly provide multiple services.Comment: To Appear in IEEE Transaction on Power System

    Factoring the Cycle Aging Cost of Batteries Participating in Electricity Markets

    Full text link
    When participating in electricity markets, owners of battery energy storage systems must bid in such a way that their revenues will at least cover their true cost of operation. Since cycle aging of battery cells represents a substantial part of this operating cost, the cost of battery degradation must be factored in these bids. However, existing models of battery degradation either do not fit market clearing software or do not reflect the actual battery aging mechanism. In this paper we model battery cycle aging using a piecewise linear cost function, an approach that provides a close approximation of the cycle aging mechanism of electrochemical batteries and can be incorporated easily into existing market dispatch programs. By defining the marginal aging cost of each battery cycle, we can assess the actual operating profitability of batteries. A case study demonstrates the effectiveness of the proposed model in maximizing the operating profit of a battery energy storage system taking part in the ISO New England energy and reserve markets

    Optimal Regulation Response of Batteries Under Cycle Aging Mechanisms

    Full text link
    When providing frequency regulation in a pay-for-performance market, batteries need to carefully balance the trade-off between following regulation signals and their degradation costs in real-time. Existing battery control strategies either do not consider mismatch penalties in pay-for-performance markets, or cannot accurately account for battery cycle aging mechanism during operation. This paper derives an online control policy that minimizes a battery owner's operating cost for providing frequency regulation in a pay-for-performance market. The proposed policy considers an accurate electrochemical battery cycle aging model, and is applicable to most types of battery cells. It has a threshold structure, and achieves near-optimal performance with respect to an offline controller that has complete future information. We explicitly characterize this gap and show it is independent of the duration of operation. Simulation results with both synthetic and real regulation traces are conducted to illustrate the theoretical results

    Techno-Economic Analysis and Optimal Control of Battery Storage for Frequency Control Services, Applied to the German Market

    Full text link
    Optimal investment in battery energy storage systems, taking into account degradation, sizing and control, is crucial for the deployment of battery storage, of which providing frequency control is one of the major applications. In this paper, we present a holistic, data-driven framework to determine the optimal investment, size and controller of a battery storage system providing frequency control. We optimised the controller towards minimum degradation and electricity costs over its lifetime, while ensuring the delivery of frequency control services compliant with regulatory requirements. We adopted a detailed battery model, considering the dynamics and degradation when exposed to actual frequency data. Further, we used a stochastic optimisation objective while constraining the probability on unavailability to deliver the frequency control service. Through a thorough analysis, we were able to decrease the amount of data needed and thereby decrease the execution time while keeping the approximation error within limits. Using the proposed framework, we performed a techno-economic analysis of a battery providing 1 MW capacity in the German primary frequency control market. Results showed that a battery rated at 1.6 MW, 1.6 MWh has the highest net present value, yet this configuration is only profitable if costs are low enough or in case future frequency control prices do not decline too much. It transpires that calendar ageing drives battery degradation, whereas cycle ageing has less impact.Comment: Submitted to Applied Energ
    • …
    corecore