8,664 research outputs found

    A Data-driven Approach to Robust Control of Multivariable Systems by Convex Optimization

    Get PDF
    The frequency-domain data of a multivariable system in different operating points is used to design a robust controller with respect to the measurement noise and multimodel uncertainty. The controller is fully parametrized in terms of matrix polynomial functions and can be formulated as a centralized, decentralized or distributed controller. All standard performance specifications like H2H_2, HH_\infty and loop shaping are considered in a unified framework for continuous- and discrete-time systems. The control problem is formulated as a convex-concave optimization problem and then convexified by linearization of the concave part around an initial controller. The performance criterion converges monotonically to a local optimal solution in an iterative algorithm. The effectiveness of the method is compared with fixed-structure controllers using non-smooth optimization and with full-order optimal controllers via simulation examples. Finally, the experimental data of a gyroscope is used to design a data-driven controller that is successfully applied on the real system

    System-level, Input-output and New Parameterizations of Stabilizing Controllers, and Their Numerical Computation

    Full text link
    It is known that the set of internally stabilizing controller Cstab\mathcal{C}_{\text{stab}} is non-convex, but it admits convex characterizations using certain closed-loop maps: a classical result is the {Youla parameterization}, and two recent notions are the {system-level parameterization} (SLP) and the {input-output parameterization} (IOP). In this paper, we address the existence of new convex parameterizations and discuss potential tradeoffs of each parametrization in different scenarios. Our main contributions are: 1) We first reveal that only four groups of stable closed-loop transfer matrices are equivalent to internal stability: one of them is used in the SLP, another one is used in the IOP, and the other two are new, leading to two new convex parameterizations of Cstab\mathcal{C}_{\text{stab}}. 2) We then investigate the properties of these parameterizations after imposing the finite impulse response (FIR) approximation, revealing that the IOP has the best ability of approximating Cstab\mathcal{C}_{\text{stab}} given FIR constraints. 3) These four parameterizations require no \emph{a priori} doubly-coprime factorization of the plant, but impose a set of equality constraints. However, these equality constraints will never be satisfied exactly in numerical computation. We prove that the IOP is numerically robust for open-loop stable plants, in the sense that small mismatches in the equality constraints do not compromise the closed-loop stability. The SLP is known to enjoy numerical robustness in the state feedback case; here, we show that numerical robustness of the four-block SLP controller requires case-by-case analysis in the general output feedback case.Comment: 20 pages; 5 figures. Added extensions on numerial computation and robustness of closed-loop parameterization

    Control limitations from distributed sensing: theory and Extremely Large Telescope application

    Full text link
    We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope.Comment: submitted to Automatic

    An optimal finite-dimensional modeling in heat conduction and diffusion equations with partially known eigenstructure

    Get PDF
    An optimal finite-dimensional modeling technique is presented for a standard class of distributed parameter systems for heat and diffusion equations. A finite-dimensional nominal model with minimum error bounds in frequency domain is established for spectral systems with partially known eigenvalues and eigenfunctions. The result is derived from a completely characterized geometric figure upon complex plane, of all the frequency responses of the systems that have (i) a finite number of given time constants T/sub i/'s and modal coefficients k/sub i/'s, (ii) an upper bound /spl rho/ to the infinite sum of the absolute values of all the modal coefficients k/sub i/'s, (iii) an upper bound T to the unknown T/sub i/'s, and (iv) a given dc gain G(0). Discussions are made on how each parameter mentioned above makes contribution to bounding error or uncertainty, and we stress that steady state analysis for dc input is used effectively in reduced order modeling and bounding errors. The feasibility of the presented scheme is demonstrated by a simple example of heat conduction in ideal copper rod. </p

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Delay-Based Controller Design for Continuous-Time and Hybrid Applications

    Get PDF
    Motivated by the availability of different types of delays in embedded systems and biological circuits, the objective of this work is to study the benefits that delay can provide in simplifying the implementation of controllers for continuous-time systems. Given a continuous-time linear time-invariant (LTI) controller, we propose three methods to approximate this controller arbitrarily precisely by a simple controller composed of delay blocks, a few integrators and possibly a unity feedback. Different problems associated with the approximation procedures, such as finding the optimal number of delay blocks or studying the robustness of the designed controller with respect to delay values, are then investigated. We also study the design of an LTI continuous-time controller satisfying given control objectives whose delay-based implementation needs the least number of delay blocks. A direct application of this work is in the sampled-data control of a real-time embedded system, where the sampling frequency is relatively high and/or the output of the system is sampled irregularly. Based on our results on delay-based controller design, we propose a digital-control scheme that can implement every continuous-time stabilizing (LTI) controller. Unlike a typical sampled-data controller, the hybrid controller introduced here -— consisting of an ideal sampler, a digital controller, a number of modified second-order holds and possibly a unity feedback -— is robust to sampling jitter and can operate at arbitrarily high sampling frequencies without requiring expensive, high-precision computation
    corecore