1,698 research outputs found

    Conversational Swarm Intelligence (CSI) Enhances Groupwise Deliberation

    Full text link
    Real-time conversational deliberation is a critical groupwise method for reaching decisions, solving problems, evaluating priorities, generating ideas, and producing insights. Unfortunately, real-time conversations are difficult to scale, losing effectiveness as groups grow above 5 to 7 members. Conversational Swarm Intelligence (CSI) is a new technology modeled on the dynamics of biological swarms. It aims to enable networked groups of any size to hold productive real-time deliberations that converge on unified solutions. CSI leverages the power of Large Language Models (LLMs) in a unique and powerful way, allowing real-time dialog among small local groups while simultaneously enabling efficient content propagation across much larger populations. In this way, CSI combines the benefits of small-scale deliberative reasoning and large-scale collective intelligence. In this study, we compare deliberative groups of 48 people using standard online chat to the same sized groups using a prototype chat-based CSI system called Thinkscape. Results show that participants using CSI contributed 51% more content (p<0.001) than those using standard chat, and the deliberations using CSI showed 37% less difference in contribution quantity between the most active vs least active members, indicating more balanced dialog. And finally, a large majority of participants preferred deliberating using the CSI system over standard chat (p<0.05) and re-ported feeling more impactful when doing so (p<0.01). These results suggest that Conversational Swarm Intelligence is a promising technology for enabling large-scale deliberation.Comment: Accepted for publication: 7th International Joint Conference on Advances in Computational Intelligence (IJCACI 2023). Oct 14, 2023. New Delhi, India. arXiv admin note: text overlap with arXiv:2309.0322

    Conversational Swarm Intelligence (CSI) Enables Rapid Group Insights

    Full text link
    When generating insights from human groups, conversational deliberation is a key method for exploring issues, surfacing ideas, debating options, and converging on solutions. Unfortunately, real-time conversations are difficult to scale, losing effectiveness in groups above 4 to 7 members. Conversational Swarm Intelligence (CSI) is a new technology that enables large human groups to hold real-time conversations using techniques modeled on the dynamics of biological swarms. Through a novel use of Large Language Models (LLMs), CSI enables real-time dialog among small groups while simultaneously fostering content propagation across a much larger group. This combines the benefits of small-scale deliberative reasoning and large-scale groupwise intelligence. In this study, we engage a group of 81 American voters from one political party in real-time deliberation using a CSI platform called Thinkscape. We then task the group with (a) forecasting which candidate from a set of options will achieve the most national support, and (b) indicating the specific reasons for this result. After only six minutes of deliberation, the group of 81 individuals converged on a selected candidate and surfaced over 400 reasons justifying various candidates, including 206 justifications that supported the selected candidate. We find that the selected candidate was significantly more supported by group members than the other options (p<0.001) and that this effect held even after six minutes of deliberation, demonstrating that CSI provides both the qualitative benefits of conversational focus groups and the quantitative benefits of largescale polling.Comment: Copyright 2023 IEEE. arXiv admin note: substantial text overlap with arXiv:2309.1236

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Challenges for Virtual Humans in Human Computing

    Get PDF

    Human-Robot interaction with low computational-power humanoids

    Get PDF
    This article investigates the possibilities of human-humanoid interaction with robots whose computational power is limited. The project has been carried during a year of work at the Computer and Robot Vision Laboratory (VisLab), part of the Institute for Systems and Robotics in Lisbon, Portugal. Communication, the basis of interaction, is simultaneously visual, verbal, and gestural. The robot's algorithm provides users a natural language communication, being able to catch and understand the person’s needs and feelings. The design of the system should, consequently, give it the capability to dialogue with people in a way that makes possible the understanding of their needs. The whole experience, to be natural, is independent from the GUI, used just as an auxiliary instrument. Furthermore, the humanoid can communicate with gestures, touch and visual perceptions and feedbacks. This creates a totally new type of interaction where the robot is not just a machine to use, but a figure to interact and talk with: a social robot

    Real-time generation and adaptation of social companion robot behaviors

    Get PDF
    Social robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with a robot. However, robots do not have human intuition - they must be equipped with the corresponding algorithmic solutions to these problems. This thesis investigates the use of reinforcement learning to adapt the robot's verbal and non-verbal communication to the user's needs and preferences. Such non-functional adaptation of the robot's behaviors primarily aims to improve the user experience and the robot's perceived social intelligence. The literature has not yet provided a holistic view of the overall challenge: real-time adaptation requires control over the robot's multimodal behavior generation, an understanding of human feedback, and an algorithmic basis for machine learning. Thus, this thesis develops a conceptual framework for designing real-time non-functional social robot behavior adaptation with reinforcement learning. It provides a higher-level view from the system designer's perspective and guidance from the start to the end. It illustrates the process of modeling, simulating, and evaluating such adaptation processes. Specifically, it guides the integration of human feedback and social signals to equip the machine with social awareness. The conceptual framework is put into practice for several use cases, resulting in technical proofs of concept and research prototypes. They are evaluated in the lab and in in-situ studies. These approaches address typical activities in domestic environments, focussing on the robot's expression of personality, persona, politeness, and humor. Within this scope, the robot adapts its spoken utterances, prosody, and animations based on human explicit or implicit feedback.Soziale Roboter werden Teil unseres zukĂŒnftigen Zuhauses sein. Sie werden uns bei alltĂ€glichen Aufgaben unterstĂŒtzen, uns unterhalten und uns mit hilfreichen RatschlĂ€gen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunĂ€chst ĂŒberwunden werden mĂŒssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche FĂ€higkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natĂŒrliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. DarĂŒber hinaus mĂŒssen Roboter auch die individuellen Vorlieben der Benutzer berĂŒcksichtigen. So ist jeder Mensch von seiner Kultur, sozialen Normen und eigenen Lebenserfahrungen geprĂ€gt, was zu unterschiedlichen Erwartungen an die Kommunikation mit einem Roboter fĂŒhrt. Roboter haben jedoch keine menschliche Intuition - sie mĂŒssen mit entsprechenden Algorithmen fĂŒr diese Probleme ausgestattet werden. In dieser Arbeit wird der Einsatz von bestĂ€rkendem Lernen untersucht, um die verbale und nonverbale Kommunikation des Roboters an die BedĂŒrfnisse und Vorlieben des Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle ĂŒber die multimodale Verhaltenserzeugung des Roboters, ein VerstĂ€ndnis des menschlichen Feedbacks und eine algorithmische Basis fĂŒr maschinelles Lernen. Daher wird in dieser Arbeit ein konzeptioneller Rahmen fĂŒr die Gestaltung von nicht-funktionaler Anpassung der Kommunikation sozialer Roboter mit bestĂ€rkendem Lernen entwickelt. Er bietet eine ĂŒbergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit sozialem Bewusstsein auszustatten. Der konzeptionelle Rahmen wird fĂŒr mehrere AnwendungsfĂ€lle in die Praxis umgesetzt, was zu technischen Konzeptnachweisen und Forschungsprototypen fĂŒhrt, die in Labor- und In-situ-Studien evaluiert werden. Diese AnsĂ€tze befassen sich mit typischen AktivitĂ€ten in hĂ€uslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis expliziten oder impliziten menschlichen Feedbacks an
    • 

    corecore