30,767 research outputs found

    Control-theoretic forward error analysis of iterative numerical algorithms

    Get PDF

    Quantization in Control Systems and Forward Error Analysis of Iterative Numerical Algorithms

    Get PDF
    The use of control theory to study iterative algorithms, which can be considered as dynamical systems, opens many opportunities to find new tools for analysis of algorithms. In this paper we show that results from the study of quantization effects in control systems can be used to find systematic ways for forward error analysis of iterative algorithms. The proposed schemes are applied to the classical iterative methods for solving a system of linear equations. The obtained bounds are compared with bounds given in the numerical analysis literature

    Time Complexity of Decentralized Fixed-Mode Verification

    Get PDF
    Given an interconnected system, this note is concerned with the time complexity of verifying whether an unrepeated mode of the system is a decentralized fixed mode (DFM). It is shown that checking the decentralized fixedness of any distinct mode is tantamount to testing the strong connectivity of a digraph formed based on the system. It is subsequently proved that the time complexity of this decision problem using the proposed approach is the same as the complexity of matrix multiplication. This work concludes that the identification of distinct DFMs (by means of a deterministic algorithm, rather than a randomized one) is computationally very easy, although the existing algorithms for solving this problem would wrongly imply that it is cumbersome. This note provides not only a complexity analysis, but also an efficient algorithm for tackling the underlying problem

    Optimal Stabilization using Lyapunov Measures

    Full text link
    Numerical solutions for the optimal feedback stabilization of discrete time dynamical systems is the focus of this paper. Set-theoretic notion of almost everywhere stability introduced by the Lyapunov measure, weaker than conventional Lyapunov function-based stabilization methods, is used for optimal stabilization. The linear Perron-Frobenius transfer operator is used to pose the optimal stabilization problem as an infinite dimensional linear program. Set-oriented numerical methods are used to obtain the finite dimensional approximation of the linear program. We provide conditions for the existence of stabilizing feedback controls and show the optimal stabilizing feedback control can be obtained as a solution of a finite dimensional linear program. The approach is demonstrated on stabilization of period two orbit in a controlled standard map

    A Learning Theoretic Approach to Energy Harvesting Communication System Optimization

    Full text link
    A point-to-point wireless communication system in which the transmitter is equipped with an energy harvesting device and a rechargeable battery, is studied. Both the energy and the data arrivals at the transmitter are modeled as Markov processes. Delay-limited communication is considered assuming that the underlying channel is block fading with memory, and the instantaneous channel state information is available at both the transmitter and the receiver. The expected total transmitted data during the transmitter's activation time is maximized under three different sets of assumptions regarding the information available at the transmitter about the underlying stochastic processes. A learning theoretic approach is introduced, which does not assume any a priori information on the Markov processes governing the communication system. In addition, online and offline optimization problems are studied for the same setting. Full statistical knowledge and causal information on the realizations of the underlying stochastic processes are assumed in the online optimization problem, while the offline optimization problem assumes non-causal knowledge of the realizations in advance. Comparing the optimal solutions in all three frameworks, the performance loss due to the lack of the transmitter's information regarding the behaviors of the underlying Markov processes is quantified

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio
    • …
    corecore