191 research outputs found

    Machine Learning in Digital Signal Processing for Optical Transmission Systems

    Get PDF
    The future demand for digital information will exceed the capabilities of current optical communication systems, which are approaching their limits due to component and fiber intrinsic non-linear effects. Machine learning methods are promising to find new ways of leverage the available resources and to explore new solutions. Although, some of the machine learning methods such as adaptive non-linear filtering and probabilistic modeling are not novel in the field of telecommunication, enhanced powerful architecture designs together with increasing computing power make it possible to tackle more complex problems today. The methods presented in this work apply machine learning on optical communication systems with two main contributions. First, an unsupervised learning algorithm with embedded additive white Gaussian noise (AWGN) channel and appropriate power constraint is trained end-to-end, learning a geometric constellation shape for lowest bit-error rates over amplified and unamplified links. Second, supervised machine learning methods, especially deep neural networks with and without internal cyclical connections, are investigated to combat linear and non-linear inter-symbol interference (ISI) as well as colored noise effects introduced by the components and the fiber. On high-bandwidth coherent optical transmission setups their performances and complexities are experimentally evaluated and benchmarked against conventional digital signal processing (DSP) approaches. This thesis shows how machine learning can be applied to optical communication systems. In particular, it is demonstrated that machine learning is a viable designing and DSP tool to increase the capabilities of optical communication systems

    Circuit paradigm in the 21

    Get PDF
    reviewe

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver

    Efficient audio signal processing for embedded systems

    Get PDF
    We investigated two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound "richer" and "fuller," using a combination of bass extension and dynamic range compression. We also developed an audio energy reduction algorithm for loudspeaker power management by suppressing signal energy below the masking threshold. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. We also designed the circuits to implement the AdaBoost-based analog classifier.PhDCommittee Chair: Anderson, David; Committee Member: Hasler, Jennifer; Committee Member: Hunt, William; Committee Member: Lanterman, Aaron; Committee Member: Minch, Bradle

    Dynamic Optical Networks for Data Centres and Media Production

    Get PDF
    This thesis explores all-optical networks for data centres, with a particular focus on network designs for live media production. A design for an all-optical data centre network is presented, with experimental verification of the feasibility of the network data plane. The design uses fast tunable (< 200 ns) lasers and coherent receivers across a passive optical star coupler core, forming a network capable of reaching over 1000 nodes. Experimental transmission of 25 Gb/s data across the network core, with combined wavelength switching and time division multiplexing (WS-TDM), is demonstrated. Enhancements to laser tuning time via current pre-emphasis are discussed, including experimental demonstration of fast wavelength switching (< 35 ns) of a single laser between all combinations of 96 wavelengths spaced at 50 GHz over a range wider than the optical C-band. Methods of increasing the overall network throughput by using a higher complexity modulation format are also described, along with designs for line codes to enable pulse amplitude modulation across the WS-TDM network core. The construction of an optical star coupler network core is investigated, by evaluating methods of constructing large star couplers from smaller optical coupler components. By using optical circuit switches to rearrange star coupler connectivity, the network can be partitioned, creating independent reserves of bandwidth and resulting in increased overall network throughput. Several topologies for constructing a star from optical couplers are compared, and algorithms for optimum construction methods are presented. All of the designs target strict criteria for the flexible and dynamic creation of multicast groups, which will enable future live media production workflows in data centres. The data throughput performance of the network designs is simulated under synthetic and practical media production traffic scenarios, showing improved throughput when reconfigurable star couplers are used compared to a single large star. An energy consumption evaluation shows reduced network power consumption compared to incumbent and other proposed data centre network technologies

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    ï»żModerne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensĂ€tzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe LinearitĂ€t. Die GewĂ€hrleistung einer ausreichenden LinearitĂ€t ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends fĂŒr Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfĂŒgbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz ĂŒber einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von NichtlinearitĂ€ten in EmpfĂ€ngern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der VorwĂ€rtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die LĂŒcken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgefĂŒhrt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender EmpfĂ€nger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. DarĂŒber hinaus wird die LeistungsfĂ€higkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. ZusĂ€tzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen DomĂ€ne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive LinearitĂ€t des HF-Frontends stark erhöht werden. Damit wird der zuverlĂ€ssige Betrieb eines einfachen Funkmoduls unter dem Einfluss der EmpfĂ€ngernichtlinearitĂ€t möglich. Aufgrund des flexiblen Designs ist der Algorithmus fĂŒr breitbandige EmpfĂ€nger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschrĂ€nkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios

    Ground segment design and deployment for GranaSAT-I

    Get PDF
    This Thesis presents the design of a ground segment for the GranaSAT-I cubesat, a microsatellite in development process which will require of a system capable of receiving its telemetry and sending telecommands when it is launched. The project includes an analysis of all the physical phenomena and components involved in the transmission of the signal from an spacecraft in Low Earth Orbit to the station located in the Faculty of Sciences of the University of Granada. The deployment and testing processes were also carried out and are described in detail.Proyecto Fin de Carrera de la Univ. de Granada. Departamento de ElectrĂłnica y TecnologĂ­a de Computadores. Curso 2014-201

    Compact beamforming in medical ultrasound scanners

    Get PDF

    ACADEMIC HANDBOOK (UNDERGRADUATE) COLLEGE OF ENGINEERING (CoE)

    Get PDF
    • 

    corecore