247 research outputs found

    A Robust Model Predictive Control Approach for Autonomous Underwater Vehicles Operating in a Constrained workspace

    Full text link
    This paper presents a novel Nonlinear Model Predictive Control (NMPC) scheme for underwater robotic vehicles operating in a constrained workspace including static obstacles. The purpose of the controller is to guide the vehicle towards specific way points. Various limitations such as: obstacles, workspace boundary, thruster saturation and predefined desired upper bound of the vehicle velocity are captured as state and input constraints and are guaranteed during the control design. The proposed scheme incorporates the full dynamics of the vehicle in which the ocean currents are also involved. Hence, the control inputs calculated by the proposed scheme are formulated in a way that the vehicle will exploit the ocean currents, when these are in favor of the way-point tracking mission which results in reduced energy consumption by the thrusters. The performance of the proposed control strategy is experimentally verified using a 44 Degrees of Freedom (DoF) underwater robotic vehicle inside a constrained test tank with obstacles.Comment: IEEE International Conference on Robotics and Automation (ICRA-2018), Accepte

    Investigation into the Dynamics and Control of an Underwater Vehicle-Manipulator System

    Get PDF
    This study addresses the detailed modeling and simulation of the dynamic coupling between an underwater vehicle and manipulator system. The dynamic coupling effects due to damping, restoring, and inertial effects of an underwater manipulator mounted on an autonomous underwater vehicle (AUV) are analyzed by considering the actuator and sensor characteristics. A model reference control (MRC) scheme is proposed for the underwater vehicle-manipulator system (UVMS). The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative (PID) control. The robustness of the proposed control scheme is also illustrated in the presence of external disturbances and parameter uncertainties

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Guidance Laws for Autonomous Underwater Vehicles

    Get PDF

    Design and development of autonomous robotic fish for object detection and tracking

    Get PDF
    In this article, an autonomous robotic fish is designed for underwater operations like object detection and tracking along with collision avoidance. The computer-aided design model for prototype robotic fish is designed using the Solid Works® software to export an stereolithography (STL) file to MakerBot, a 3D printer, to manufacture the parts of robotic fish using polylactic acid thermoplastic polymer. The precise maneuverability of the robotic fish is achieved by the propulsion of a caudal fin. The oscillation of the caudal fin is controlled by a servomotor. A combination of visual and ultrasonic sensors is used to track the position and distance of the desired object with respect to the fish and also to avoid the obstacles. The robotic fish has the ability to detect an object up to a distance of 90 cm at normal exposure conditions. A computational fluid dynamics analysis is conducted to analyze the fluid hydrodynamics (flow rate of water and pressure) around the hull of a robotic fish and the drag force acting on it. A series of experimental results have shown the effectiveness of the designed underwater robotic fish. </jats:p

    On-Line Identification of Autonomous Underwater Vehicles through Global Derivative-Free Optimization

    No full text
    We describe the design and implementation of an on-line identification scheme for Autonomous Underwater Vehicles (AUVs). The proposed method estimates the dynamic parameters of the vehicle based on a global derivative-free optimization algorithm. It is not sensitive to initial conditions, unlike other on-line identification schemes, and does not depend on the differentiability of the model with respect to the parameters. The identification scheme consists of three distinct modules: a) System Excitation, b) Metric Calculator and c) Optimization Algorithm. The System Excitation module sends excitation inputs to the vehicle. The Optimization Algorithm module calculates a candidate parameter vector, which is fed to the Metric Calculator module. The Metric Calculator module evaluates the candidate parameter vector, using a metric based on the residual of the actual and the predicted commands. The predicted commands are calculated utilizing the candidate parameter vector and the vehicle state vector, which is available via a complete navigation module. Then, the metric is directly fed back to the Optimization Algorithm module, and it is used to correct the estimated parameter vector. The procedure continues iteratively until the convergence properties are met. The proposed method is generic, demonstrates quick convergence and does not require a linear formulation of the model with respect to the parameter vector. The applicability and performance of the proposed algorithm is experimentally verified using the AUV Girona 500. © 2013 IEEE

    Set-based Inverse Kinematics Control of an Anthropomorphic Dual Arm Aerial Manipulator

    Get PDF
    The paper presents a multiple task-priority inverse kinematics algorithm for a dual-arm aerial manipulator. Both tasks defined as equality constraints and inequality constraints are handled by means of a singularity robust method based on the Null-Space based Behavioral control. The proposed schema is constituted by the inverse kinematics control, that receives the desired behavior of the system and outputs the reference values for the motion variables, i.e. the UAV pose and the arm joints position, and a motion control, that computes the vehicle thrusts and the joint torques. The method has been experimentally validated on a system composed by an underactuated aerial hexarotor vehicle equipped with two lightweight 4-DOF manipulators, involved in operations requiring the coordination of the two arms and the vehicle

    Review of sliding mode control application in autonomous underwater vehicles

    Get PDF
    973-984This paper presents a review of sliding mode control for autonomous underwater vehicles (AUVs). The AUVs are used under water operating in the presence of uncertainties (due to hydrodynamics coefficients) and external disturbances (due to water currents, waves, etc.). Sliding mode controller is one of the nonlinear robust controllers which is robust towards uncertainties, parameter variations and external disturbances. The evolution of sliding mode control in motion control studies of autonomous underwater vehicles is summarized throughout for the last three decades. The performance of the controller is examined based on the chattering reduction, accuracy (steady state error reduction), and robustness against perturbation. The review on sliding mode control for AUVs provides insights for readers to design new techniques and algorithms, to enhance the existing family of sliding mode control strategies into a new one or to merge and re-supervise the control techniques with other control strategies, in which, the aim is to obtain good controller design for AUVs in terms of great performance, stability and robustness

    Underwater Robots Part II: Existing Solutions and Open Issues

    Get PDF
    National audienceThis paper constitutes the second part of a general overview of underwater robotics. The first part is titled: Underwater Robots Part I: current systems and problem pose. The works referenced as (Name*, year) have been already cited on the first part of the paper, and the details of these references can be found in the section 7 of the paper titled Underwater Robots Part I: current systems and problem pose. The mathematical notation used in this paper is defined in section 4 of the paper Underwater Robots Part I: current systems and problem pose
    corecore