37,119 research outputs found

    An EWMA control chart for the multivariate coefficient of variation

    Full text link
    This is the peer reviewed version of the following article: Giner-Bosch, V, Tran, KP, Castagliola, P, Khoo, MBC. An EWMA control chart for the multivariate coefficient of variation. Qual Reliab Engng Int. 2019; 35: 1515-1541, which has been published in final form at https://doi.org/10.1002/qre.2459. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Monitoring the multivariate coefficient of variation over time is a natural choice when the focus is on stabilising the relative variability of a multivariate process, as is the case in a significant number of real situations in engineering, health sciences, and finance, to name but a few areas. However, not many tools are available to practitioners with this aim. This paper introduces a new control chart to monitor the multivariate coefficient of variation through an exponentially weighted moving average (EWMA) scheme. Concrete methodologies to calculate the limits and evaluate the performance of the chart proposed and determine the optimal values of the chart's parameters are derived based on a theoretical study of the statistic being monitored. Computational experiments reveal that our proposal clearly outperforms existing alternatives, in terms of the average run length to detect an out-of-control state. A numerical example is included to show the efficiency of our chart when operating in practice.Generalitat Valenciana, Grant/Award Number: BEST/2017/033 and GV/2016/004; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2013-45381-PGiner-Bosch, V.; Tran, KP.; Castagliola, P.; Khoo, MBC. (2019). An EWMA control chart for the multivariate coefficient of variation. Quality and Reliability Engineering International. 35(6):1515-1541. https://doi.org/10.1002/qre.2459S15151541356Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A Control Chart for the Coefficient of Variation. Journal of Quality Technology, 39(2), 151-158. doi:10.1080/00224065.2007.11917682Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2015). Monitoring the coefficient of variation using a variable sample size control chart in short production runs. The International Journal of Advanced Manufacturing Technology, 81(1-4), 1-14. doi:10.1007/s00170-015-7084-4Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2017). A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs. International Journal of Production Research, 55(19), 5521-5536. doi:10.1080/00207543.2017.1285076Yeong, W. C., Khoo, M. B. C., Tham, L. K., Teoh, W. L., & Rahim, M. A. (2017). Monitoring the Coefficient of Variation Using a Variable Sampling Interval EWMA Chart. Journal of Quality Technology, 49(4), 380-401. doi:10.1080/00224065.2017.11918004Teoh, W. L., Khoo, M. B. C., Castagliola, P., Yeong, W. C., & Teh, S. Y. (2017). Run-sum control charts for monitoring the coefficient of variation. European Journal of Operational Research, 257(1), 144-158. doi:10.1016/j.ejor.2016.08.067Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501Van Valen, L. (1974). Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45(1), 235-247. doi:10.1016/0022-5193(74)90053-8Albert, A., & Zhang, L. (2010). A novel definition of the multivariate coefficient of variation. Biometrical Journal, 52(5), 667-675. doi:10.1002/bimj.201000030Aerts, S., Haesbroeck, G., & Ruwet, C. (2015). Multivariate coefficients of variation: Comparison and influence functions. Journal of Multivariate Analysis, 142, 183-198. doi:10.1016/j.jmva.2015.08.006Bennett, B. M. (1977). On multivariate coefficients of variation. Statistische Hefte, 18(2), 123-128. doi:10.1007/bf02932744Underhill, L. G. (1990). The coefficient of variation biplot. Journal of Classification, 7(2), 241-256. doi:10.1007/bf01908718Boik, R. J., & Shirvani, A. (2009). Principal components on coefficient of variation matrices. Statistical Methodology, 6(1), 21-46. doi:10.1016/j.stamet.2008.02.006MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414. doi:10.1016/0967-0661(95)00014-lBersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829Yeong, W. C., Khoo, M. B. C., Teoh, W. L., & Castagliola, P. (2015). A Control Chart for the Multivariate Coefficient of Variation. Quality and Reliability Engineering International, 32(3), 1213-1225. doi:10.1002/qre.1828Lim, A. J. X., Khoo, M. B. C., Teoh, W. L., & Haq, A. (2017). Run sum chart for monitoring multivariate coefficient of variation. Computers & Industrial Engineering, 109, 84-95. doi:10.1016/j.cie.2017.04.023Roberts, S. W. (1966). A Comparison of Some Control Chart Procedures. Technometrics, 8(3), 411-430. doi:10.1080/00401706.1966.10490374Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239-250. doi:10.1080/00401706.1959.10489860Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32(1), 1-12. doi:10.1080/00401706.1990.10484583Wijsman, R. A. (1957). Random Orthogonal Transformations and their use in Some Classical Distribution Problems in Multivariate Analysis. The Annals of Mathematical Statistics, 28(2), 415-423. doi:10.1214/aoms/1177706969The general sampling distribution of the multiple correlation coefficient. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 121(788), 654-673. doi:10.1098/rspa.1928.0224Paolella, M. S. (2007). Intermediate Probability. doi:10.1002/9780470035061WalckC.Handbook on statistical distributions for experimentalists. Tech. Rep. SUFPFY/96‐01 Stockholm   Particle Physics Group Fysikum University of Stockholm;2007. http://inspirehep.net/record/1389910BROOK, D., & EVANS, D. A. (1972). An approach to the probability distribution of cusum run length. Biometrika, 59(3), 539-549. doi:10.1093/biomet/59.3.539Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the Coefficient of Variation Using EWMA Charts. Journal of Quality Technology, 43(3), 249-265. doi:10.1080/00224065.2011.11917861Vining, G. (2009). Technical Advice: Phase I and Phase II Control Charts. Quality Engineering, 21(4), 478-479. doi:10.1080/08982110903185736Scilab Enterprises: Scilab: Free and open source software for numerical computation Version 6.0.0.http://www.scilab.org;2017.Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308PAGE, E. S. (1954). CONTINUOUS INSPECTION SCHEMES. Biometrika, 41(1-2), 100-115. doi:10.1093/biomet/41.1-2.100Über die hypergeometrische Reihe . (1836). Journal für die reine und angewandte Mathematik (Crelles Journal), 1836(15), 39-83. doi:10.1515/crll.1836.15.3

    Extensions Of Multivariate Coefficient Of Variation Control Charts

    Get PDF
    Control charts for monitoring multivariate coefficient of variation (MCV) are applied when the interest is in monitoring the relative multivariate variability to the mean vector of a multivariate process. This thesis proposes an upper-sided variable sampling interval (VSI) exponentially weighted moving average (EWMA) chart to detect upward shifts in the MCV squared

    One-sided Downward Control Chart for Monitoring the Multivariate Coefficient of Variation with VSSI Strategy

    Get PDF
    In recent years, control charts monitoring the coefficient of variation (CV), denoted as the ratio of the variance to the mean, is attracting significant attention due to its ability to monitor processes in which the process mean and process variance are not independent of each other. However, very few studies have been done on charts to monitor downward process shifts, which is important since downward process shifts show process improvement. In view of the importance of today's competitive manufacturing environment, this paper proposes a one-sided chart to monitor the downward multivariate CV (MCV) with variable sample size and sampling interval (VSSI), i.e. the VSSID MCV chart. This paper monitors the MCV as most industrial processes simultaneously monitor at least two or more quality characteristics, while the VSSI feature is incorporated, as it is shown that this feature brings about a significant improvement of the chart. A Markov chain approach was adopted for designing a performance measure of the proposed chart. The numerical comparison revealed that the proposed chart outperformed existing MCV charts. The implementation of the VSSID MCV chart is illustrated with an example

    Variable Sample Size Control Charts for Monitoring the Multivariate Coefficient of Variation Based on Median Run Length and Expected Median Run Length

    Get PDF
    The monitoring of a well-functioning process system has always held significant importance. In recent times, there has been notable attention towards employing control charts to oversee both univariate and multivariate coefficients of variation (MCV). This shift is in response to the concern of erroneous outcomes that can arise when traditional control charts are applied under the condition of dependent mean and standard deviation, as highlighted by prior research. To address this, the remedy lies in adopting the coefficient of variation. Furthermore, this study underscores the application of MCV in scenarios where multiple quality attributes are simultaneously under surveillance within an industrial process. This aspect has demonstrated considerable enhancement in chart performance, especially when incorporating the variable sample size (VSS) feature into the MCV chart. Adaptive VSS, evaluated through metrics like median run length (MRL) and expected median run length (EMRL), is also integrated for MCV monitoring. In contrast to earlier studies that predominantly focused on average run length (ARL), this research acknowledges the potential inaccuracies in ARL measurement. In this study, two optimal designs for VSS MCV charts are formulated by minimizing two criteria: firstly, MRL; and secondly, EMRL, both accounting for deterministic and unknown shift sizes. Additionally, to assess the distribution's variability in run lengths, the study provides the 5th and 95th percentiles. The research delves into two VSS schemes: one with a defined small sample size (nS), and another with a predetermined large sample size (nL) for the initial subgroup (n(1)). The approach taken involves the development of a Markov chain method for designing and deriving performance measures of the proposed chart. These measures include MRL and EMRL. Moreover, a comparative analysis between the proposed chart's performance and the standard MCV chart (STD) is presented in terms of MRL and EMRL criteria. The outcomes illustrate the superiority of the proposed chart over the STD MCV chart for all shift sizes, whether they are upward or downward, and when n(1) equals nS or nL

    Contributions to improve the power, efficiency and scope of control-chart methods : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Statistics at Massey University, Albany, New Zealand

    Get PDF
    Listed in 2019 Dean's List of Exceptional ThesesDetection of outliers and other anomalies in multivariate datasets is a particularly difficult problem which spans across a range of systems, such as quality control in factories, microarrays or proteomic analyses, identification of features in image analysis, identifying unauthorized access in network traffic patterns, and detection of changes in ecosystems. Multivariate control charts (MCC) are popular and sophisticated statistical process control (SPC) methods for monitoring characteristics of interest and detecting changes in a multivariate process. These methods are divided into memory-less and memory-type charts which are used to monitor large and small-to-moderate shifts in the process, respectively. For example, the multivariate χ2 is a memory-less control chart that uses only the most current process information and disregards any previous observations; it is typically used where any shifts in the process mean are expected to be relatively large. To increase the sensitivity of the multivariate process control tool for the detection of small-to-moderate shifts in the process mean vector, different multivariate memory-type tools that use information from both the current and previous process observations have been proposed. These tools have proven very useful for multivariate independent normal or "nearly" normal distributed processes. Like most univariate control-chart methods, when the process parameters (i.e., the process mean vector or covariance parameters, or both) are unknown, then MCC methods are based on estimated parameters, and their implementation occurs in two phases. In Phase I (retrospective phase), a historical reference sample is studied to establish the characteristics of the in-control state and evaluate the stability of the process. Once the in-control reference sample has been deemed to be stable, the process parameters are estimated from Phase I, and control chart limits are obtained for use in Phase II. The Phase II aspect initiates ongoing regular monitoring of the process. If successive observed values obtained at the beginning of Phase II fall within specified desired in-control limits, the process is considered to be in control. In contrast, any observed values during Phase II which fall outside the specified control limits indicate that the process may be out of control, and remedial responses are then required. Although conventional MCC are well developed from a statistical point of view, they can be difficult to apply in modern, data-rich contexts. This serious drawback comes from the fact that classical MCC plotting statistics requires the inversion of the covariance matrix, which is typically assumed to be known. In practice, the covariance matrix is seldom known and often empirically estimated, using a sample covariance matrix from historical data. While the empirical estimate of the covariance matrix may be an unbiased and consistent estimator for a low-dimensional data matrix with an adequate prior sample size, it performs inconsistently in high-dimensional settings. In particular, the empirical estimate of the covariance matrix can lead to in ated false-alarm rates and decreased sensitivity of the chart to detect changes in the process. Also, the statistical properties of traditional MCC tools are accurate only if the assumption of multivariate normality is satisfied. However, in many cases, the underlying system is not multivariate normal, and as a result, the traditional charts can be adversely affected. The necessity of this assumption generally restricts the application of traditional control charts to monitoring industrial processes. Most MCC applications also typically focus on monitoring either the process mean vector or the process variability, and they require that the process mean vector be stable, and that the process variability be independent of the process mean. However, in many real-life processes, the process variability is dependent on the mean, and the mean is not necessarily constant. In such cases, it is more appropriate to monitor the coefficient of variation (CV). The univariate CV is the ratio of the standard deviation to the mean of a random variable. As a relative dispersion measure to the mean, it is useful for comparing the variability of populations having very different process means. More recently, MCC methods have been adapted for monitoring the multivariate coefficient of variation (CV). However, to date, studies of multivariate CV control charts have focused on power - the detection of out-of-control parameters in Phase II, while no study has investigated their in-control performance in Phase I. The Phase I data set can contain unusual observations, which are problematic as they can in uence the parameter estimates, resulting in Phase II control charts with reduced power. Relevant Phase I analysis will guide practitioners with the choice of appropriate multivariate CV estimation procedures when the Phase I data contain contaminated samples. In this thesis, we investigated the performance of the most widely adopted memory-type MCC methods: the multivariate cumulative sum (MCUSUM) and the multivariate exponentially weighted moving average (MEWMA) charts, for monitoring shifts in a process mean vector when the process parameters are unknown and estimated from Phase I (chapters 2 and 3). We demonstrate that using a shrinkage estimate of the covariance matrix improves the run-length performance of these methods, particularly when only a small Phase I sample size is available. In chapter 4, we investigate the Phase I performance of a variety of multivariate CV charts, considering both diffuse symmetric and localized CV disturbance scenarios, and using probability to signal (PTS) as a performance measure. We present a new memory-type control chart for monitoring the mean vector of a multivariate normally distributed process, namely, the multivariate homogeneously weighted moving average (MHWMA) control chart (chapter 5). We present the design procedure and compare the run length performance of the proposed MHWMA chart for the detection of small shifts in the process mean vector with a variety of other existing MCC methods. We also present a dissimilarity-based distribution-free control chart for monitoring changes in the centroid of a multivariate ecological community (chapter 6). The proposed chart may be used, for example, to discover when an impact may have occurred in a monitored ecosystem, and is based on a change-point method that does not require prior knowledge of the ecosystem's behaviour before the monitoring begins. A novel permutation procedure is employed to obtain the control-chart limits of the proposed charting test-statistic to obtain a suitable distance-based model of the target ecological community through time. Finally, we propose enhancements to some classical univariate control chart tools for monitoring small shifts in the process mean, for those scenarios where the process variable is observed along with a correlated auxiliary variable (chapters 7 through 9). We provide the design structure of the charts and examine their performance in terms of their run length properties. We compare the run length performance of the proposed charts with several existing charts for detecting a small shift in the process mean. We offer suggestions on the applications of the proposed charts (in chapters 7 and 8), for cases where the exact measurement of the process variable of interest or the auxiliary variable is diffcult or expensive to obtain, but where the rank ordering of its units can be obtained at a negligible cost. Thus, this thesis, in general, will aid practitioners in applying a wider variety of enhanced and novel control chart tools for more powerful and effcient monitoring of multivariate process. In particular, we develop and test alternative methods for estimating covariance matrices of some useful control-charts' tools (chapters 2 and 3), give recommendations on the choice of an appropriate multivariate CV chart in Phase I (chapter 4), present an efficient method for monitoring small shifts in the process mean vector (chapter 5), expand MCC analyses to cope with non-normally distributed datasets (chapter 6) and contribute to methods that allow efficient use of an auxiliary variable that is observed and correlated with the process variable of interest (chapters 7 through 9)

    Quantitative infrared thermography resolved leakage current problem in cathodic protection system

    Get PDF
    Leakage current problem can happen in Cathodic Protection (CP) system installation. It could affect the performance of underground facilities such as piping, building structure, and earthing system. Worse can happen is rapid corrosion where disturbance to plant operation plus expensive maintenance cost. Occasionally, if it seems, tracing its root cause could be tedious. The traditional method called line current measurement is still valid effective. It involves isolating one by one of the affected underground structures. The recent methods are Close Interval Potential Survey and Pipeline Current Mapper were better and faster. On top of the mentioned method, there is a need to enhance further by synthesizing with the latest visual methods. Therefore, this paper describes research works on Infrared Thermography Quantitative (IRTQ) method as resolution of leakage current problem in CP system. The scope of study merely focuses on tracing the root cause of leakage current occurring at the CP system lube base oil plant. The results of experiment adherence to the hypothesis drawn. Consequently, res

    Multivariate KPI for energy management of cooling system in food industry

    Get PDF
    Within EU, the food industry is currently ranked among the energy-intensive sectors, mainly as a consequence of the cooling system shareover the total energy demand. As such, the definition of appropriate key performance indicators (KPI) for ammonia chillers can play a strategic role for the efficient monitoring of the energy performance of the cooling systems. The goal of this paper is to develop an appropriate management approach, to account for energy inefficiency of the single compressors, and to identify the specific variables driving the performance outliers. To this end, a new KPI is proposed which correlates the energy consumption and the different process variables. The construction of the new indicator was carried out by means of multivariate statistical analysis, in particular using Kernel Partial Least Square (KPLS).This method is able to evaluate the maximum correlation between dataset and energy consumption employing nonlinear regression techniques. The validity of the new KPI is discussed on a case study relevant to the cooling system of a frozen ready meals industry. The assessment of the proposed metric is one against Specific Energy Consumption (SEC) like indicator, typically used in the context of the Energy Management Systems
    corecore