239 research outputs found

    Soft computing and non-parametric techniques for effective video surveillance systems

    Get PDF
    Esta tesis propone varios objetivos interconectados para el diseño de un sistema de vídeovigilancia cuyo funcionamiento es pensado para un amplio rango de condiciones. Primeramente se propone una métrica de evaluación del detector y sistema de seguimiento basada en una mínima referencia. Dicha técnica es una respuesta a la demanda de ajuste de forma rápida y fácil del sistema adecuándose a distintos entornos. También se propone una técnica de optimización basada en Estrategias Evolutivas y la combinación de funciones de idoneidad en varios pasos. El objetivo es obtener los parámetros de ajuste del detector y el sistema de seguimiento adecuados para el mejor funcionamiento en una amplia gama de situaciones posibles Finalmente, se propone la construcción de un clasificador basado en técnicas no paramétricas que pudieran modelar la distribución de datos de entrada independientemente de la fuente de generación de dichos datos. Se escogen actividades detectables a corto plazo que siguen un patrón de tiempo que puede ser fácilmente modelado mediante HMMs. La propuesta consiste en una modificación del algoritmo de Baum-Welch con el fin de modelar las probabilidades de emisión del HMM mediante una técnica no paramétrica basada en estimación de densidad con kernels (KDE). _____________________________________This thesis proposes several interconnected objectives for the design of a video-monitoring system whose operation is thought for a wide rank of conditions. Firstly an evaluation technique of the detector and tracking system is proposed and it is based on a minimum reference or ground-truth. This technique is an answer to the demand of fast and easy adjustment of the system adapting itself to different contexts. Also, this thesis proposes a technique of optimization based on Evolutionary Strategies and the combination of fitness functions. The objective is to obtain the parameters of adjustment of the detector and tracking system for the best operation in an ample range of possible situations. Finally, it is proposed the generation of a classifier in which a non-parametric statistic technique models the distribution of data regardless the source generation of such data. Short term detectable activities are chosen that follow a time pattern that can easily be modeled by Hidden Markov Models (HMMs). The proposal consists in a modification of the Baum-Welch algorithm with the purpose of modeling the emission probabilities of the HMM by means of a nonparametric technique based on the density estimation with kernels (KDE)

    Semantic Segmentation based deep learning approaches for weed detection

    Get PDF
    Global increase in herbicide use to control weeds has led to issues such as evolution of herbicide-resistant weeds, off-target herbicide movement, etc. Precision agriculture advocates Site Specific Weed Management (SSWM) application to achieve precise and right amount of herbicide spray and reduce off-target herbicide movement. Recent advancements in Deep Learning (DL) have opened possibilities for adaptive and accurate weed recognitions for field based SSWM applications with traditional and emerging spraying equipment; however, challenges exist in identifying the DL model structure and train the model appropriately for accurate and rapid model applications over varying crop/weed growth stages and environment. In our study, an encoder-decoder based DL architecture was proposed that performs pixel-wise Semantic Segmentation (SS) classifications of crop, soil, and weed patches in the fields. The objective of this study was to develop a robust weed detection algorithm using DL techniques that can accurately and reliably locate weed infestations in low altitude Unmanned Aerial Vehicle (UAV) imagery with acceptable application speed. Two different encoder-decoder based SS models of LinkNet and UNet were developed using transfer learning techniques. We performed various measures such as backpropagation optimization and refining of the dataset used for training to address the class-imbalance problem which is a common issue in developing weed detection models. It was found that LinkNet model with ResNet18 as the encoder section and use of ‘Focal loss’ loss function was able to achieve the highest mean and class-wise Intersection over Union scores for different class categories while performing predictions on unseen dataset. The developed state-of-art model did not require a large amount of data during training and the techniques used to develop the model in our study provides a propitious opportunity that performs better than the existing SS based weed detections models. The proposed model integrates a futuristic approach to develop a model that could be used for weed detection on aerial imagery from UAV and perform real-time SSWM applications Advisor: Yeyin Sh

    Exploration of cyber-physical systems for GPGPU computer vision-based detection of biological viruses

    Get PDF
    This work presents a method for a computer vision-based detection of biological viruses in PAMONO sensor images and, related to this, methods to explore cyber-physical systems such as those consisting of the PAMONO sensor, the detection software, and processing hardware. The focus is especially on an exploration of Graphics Processing Units (GPU) hardware for “General-Purpose computing on Graphics Processing Units” (GPGPU) software and the targeted systems are high performance servers, desktop systems, mobile systems, and hand-held systems. The first problem that is addressed and solved in this work is to automatically detect biological viruses in PAMONO sensor images. PAMONO is short for “Plasmon Assisted Microscopy Of Nano-sized Objects”. The images from the PAMONO sensor are very challenging to process. The signal magnitude and spatial extension from attaching viruses is small, and it is not visible to the human eye on raw sensor images. Compared to the signal, the noise magnitude in the images is large, resulting in a small Signal-to-Noise Ratio (SNR). With the VirusDetectionCL method for a computer vision-based detection of viruses, presented in this work, an automatic detection and counting of individual viruses in PAMONO sensor images has been made possible. A data set of 4000 images can be evaluated in less than three minutes, whereas a manual evaluation by an expert can take up to two days. As the most important result, sensor signals with a median SNR of two can be handled. This enables the detection of particles down to 100 nm. The VirusDetectionCL method has been realized as a GPGPU software. The PAMONO sensor, the detection software, and the processing hardware form a so called cyber-physical system. For different PAMONO scenarios, e.g., using the PAMONO sensor in laboratories, hospitals, airports, and in mobile scenarios, one or more cyber-physical systems need to be explored. Depending on the particular use case, the demands toward the cyber-physical system differ. This leads to the second problem for which a solution is presented in this work: how can existing software with several degrees of freedom be automatically mapped to a selection of hardware architectures with several hardware configurations to fulfill the demands to the system? Answering this question is a difficult task. Especially, when several possibly conflicting objectives, e.g., quality of the results, energy consumption, and execution time have to be optimized. An extensive exploration of different software and hardware configurations is expensive and time-consuming. Sometimes it is not even possible, e.g., if the desired architecture is not yet available on the market or the design space is too big to be explored manually in reasonable time. A Pareto optimal selection of software parameters, hardware architectures, and hardware configurations has to be found. To achieve this, three parameter and design space exploration methods have been developed. These are named SOG-PSE, SOG-DSE, and MOGEA-DSE. MOGEA-DSE is the most advanced method of these three. It enables a multi-objective, energy-aware, measurement-based or simulation-based exploration of cyber-physical systems. This can be done in a hardware/software codesign manner. In addition, offloading of tasks to a server and approximate computing can be taken into account. With the simulation-based exploration, systems that do not exist can be explored. This is useful if a system should be equipped, e.g., with the next generation of GPUs. Such an exploration can reveal bottlenecks of the existing software before new GPUs are bought. With MOGEA-DSE the overall goal—to develop a method to automatically explore suitable cyber-physical systems for different PAMONO scenarios—could be achieved. As a result, a rapid, reliable detection and counting of viruses in PAMONO sensor data using high-performance, desktop, laptop, down to hand-held systems has been made possible. The fact that this could be achieved even for a small, hand-held device is the most important result of MOGEA-DSE. With the automatic parameter and design space exploration 84% energy could be saved on the hand-held device compared to a baseline measurement. At the same time, a speedup of four and an F-1 quality score of 0.995 could be obtained. The speedup enables live processing of the sensor data on the embedded system with a very high detection quality. With this result, viruses can be detected and counted on a mobile, hand-held device in less than three minutes and with real-time visualization of results. This opens up completely new possibilities for biological virus detection that were not possible before

    Agricultural Structures and Mechanization

    Get PDF
    In our globalized world, the need to produce quality and safe food has increased exponentially in recent decades to meet the growing demands of the world population. This expectation is being met by acting at multiple levels, but mainly through the introduction of new technologies in the agricultural and agri-food sectors. In this context, agricultural, livestock, agro-industrial buildings, and agrarian infrastructure are being built on the basis of a sophisticated design that integrates environmental, landscape, and occupational safety, new construction materials, new facilities, and mechanization with state-of-the-art automatic systems, using calculation models and computer programs. It is necessary to promote research and dissemination of results in the field of mechanization and agricultural structures, specifically with regard to farm building and rural landscape, land and water use and environment, power and machinery, information systems and precision farming, processing and post-harvest technology and logistics, energy and non-food production technology, systems engineering and management, and fruit and vegetable cultivation systems. This Special Issue focuses on the role that mechanization and agricultural structures play in the production of high-quality food and continuously over time. For this reason, it publishes highly interdisciplinary quality studies from disparate research fields including agriculture, engineering design, calculation and modeling, landscaping, environmentalism, and even ergonomics and occupational risk prevention
    corecore