3,028 research outputs found

    Autonomous Fault Detection in Self-Healing Systems using Restricted Boltzmann Machines

    Get PDF
    Autonomously detecting and recovering from faults is one approach for reducing the operational complexity and costs associated with managing computing environments. We present a novel methodology for autonomously generating investigation leads that help identify systems faults, and extends our previous work in this area by leveraging Restricted Boltzmann Machines (RBMs) and contrastive divergence learning to analyse changes in historical feature data. This allows us to heuristically identify the root cause of a fault, and demonstrate an improvement to the state of the art by showing feature data can be predicted heuristically beyond a single instance to include entire sequences of information.Comment: Published and presented in the 11th IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems (EASe 2014

    Show from Tell: Audio-Visual Modelling in Clinical Settings

    Full text link
    Auditory and visual signals usually present together and correlate with each other, not only in natural environments but also in clinical settings. However, the audio-visual modelling in the latter case can be more challenging, due to the different sources of audio/video signals and the noise (both signal-level and semantic-level) in auditory signals -- usually speech. In this paper, we consider audio-visual modelling in a clinical setting, providing a solution to learn medical representations that benefit various clinical tasks, without human expert annotation. A simple yet effective multi-modal self-supervised learning framework is proposed for this purpose. The proposed approach is able to localise anatomical regions of interest during ultrasound imaging, with only speech audio as a reference. Experimental evaluations on a large-scale clinical multi-modal ultrasound video dataset show that the proposed self-supervised method learns good transferable anatomical representations that boost the performance of automated downstream clinical tasks, even outperforming fully-supervised solutions

    Task-Agnostic Graph Neural Network Evaluation via Adversarial Collaboration

    Full text link
    It has been increasingly demanding to develop reliable methods to evaluate the progress of Graph Neural Network (GNN) research for molecular representation learning. Existing GNN benchmarking methods for molecular representation learning focus on comparing the GNNs' performances on some node/graph classification/regression tasks on certain datasets. However, there lacks a principled, task-agnostic method to directly compare two GNNs. Additionally, most of the existing self-supervised learning works incorporate handcrafted augmentations to the data, which has several severe difficulties to be applied on graphs due to their unique characteristics. To address the aforementioned issues, we propose GraphAC (Graph Adversarial Collaboration) -- a conceptually novel, principled, task-agnostic, and stable framework for evaluating GNNs through contrastive self-supervision. We introduce a novel objective function: the Competitive Barlow Twins, that allow two GNNs to jointly update themselves from direct competitions against each other. GraphAC succeeds in distinguishing GNNs of different expressiveness across various aspects, and has demonstrated to be a principled and reliable GNN evaluation method, without necessitating any augmentations.Comment: 11th International Conference on Learning Representations (ICLR 2023) Machine Learning for Drug Discovery (MLDD) Workshop. 17 pages, 6 figures, 4 table

    Link Prediction with Non-Contrastive Learning

    Full text link
    A recent focal area in the space of graph neural networks (GNNs) is graph self-supervised learning (SSL), which aims to derive useful node representations without labeled data. Notably, many state-of-the-art graph SSL methods are contrastive methods, which use a combination of positive and negative samples to learn node representations. Owing to challenges in negative sampling (slowness and model sensitivity), recent literature introduced non-contrastive methods, which instead only use positive samples. Though such methods have shown promising performance in node-level tasks, their suitability for link prediction tasks, which are concerned with predicting link existence between pairs of nodes (and have broad applicability to recommendation systems contexts) is yet unexplored. In this work, we extensively evaluate the performance of existing non-contrastive methods for link prediction in both transductive and inductive settings. While most existing non-contrastive methods perform poorly overall, we find that, surprisingly, BGRL generally performs well in transductive settings. However, it performs poorly in the more realistic inductive settings where the model has to generalize to links to/from unseen nodes. We find that non-contrastive models tend to overfit to the training graph and use this analysis to propose T-BGRL, a novel non-contrastive framework that incorporates cheap corruptions to improve the generalization ability of the model. This simple modification strongly improves inductive performance in 5/6 of our datasets, with up to a 120% improvement in Hits@50--all with comparable speed to other non-contrastive baselines and up to 14x faster than the best-performing contrastive baseline. Our work imparts interesting findings about non-contrastive learning for link prediction and paves the way for future researchers to further expand upon this area.Comment: ICLR 2023. 19 pages, 6 figure

    ClaimDistiller: Scientific Claim Extraction with Supervised Contrastive Learning

    Get PDF
    The growth of scientific papers in the past decades calls for effective claim extraction tools to automatically and accurately locate key claims from unstructured text. Such claims will benefit content-wise aggregated exploration of scientific knowledge beyond the metadata level. One challenge of building such a model is how to effectively use limited labeled training data. In this paper, we compared transfer learning and contrastive learning frameworks in terms of performance, time and training data size. We found contrastive learning has better performance at a lower cost of data across all models. Our contrastive-learning-based model ClaimDistiller has the highest performance, boosting the F1 score of the base models by 3–4%, and achieved an F1=87.45%, improving the state-of-the-art by more than 7% on the same benchmark data previously used for this task. The same phenomenon is observed on another benchmark dataset, and ClaimDistiller consistently has the best performance. Qualitative assessment on a small sample of out-of-domain data indicates that the model generalizes well. Our source codes and datasets can be found here: https://github.com/lamps-lab/sci-claim-distiller

    ISD: Self-Supervised Learning by Iterative Similarity Distillation

    Full text link
    Recently, contrastive learning has achieved great results in self-supervised learning, where the main idea is to push two augmentations of an image (positive pairs) closer compared to other random images (negative pairs). We argue that not all random images are equal. Hence, we introduce a self supervised learning algorithm where we use a soft similarity for the negative images rather than a binary distinction between positive and negative pairs. We iteratively distill a slowly evolving teacher model to the student model by capturing the similarity of a query image to some random images and transferring that knowledge to the student. We argue that our method is less constrained compared to recent contrastive learning methods, so it can learn better features. Specifically, our method should handle unbalanced and unlabeled data better than existing contrastive learning methods, because the randomly chosen negative set might include many samples that are semantically similar to the query image. In this case, our method labels them as highly similar while standard contrastive methods label them as negative pairs. Our method achieves better results compared to state-of-the-art models like BYOL and MoCo on transfer learning settings. We also show that our method performs better in the settings where the unlabeled data is unbalanced. Our code is available here: https://github.com/UMBCvision/ISD
    corecore