81 research outputs found

    Backward adaptive brightness temperature threshold technique (BAB3T): A methodology to determine extreme convective initiation regions using satellite infrared imagery

    Get PDF
    Thunderstorms in southeastern South America (SESA) stand out in satellite observations as being among the strongest on Earth in terms of satellite-based convective proxies, such as lightning flash rate per storm, the prevalence for extremely tall, wide convective cores and broad stratiform regions. Accurately quantifying when and where strong convection is initiated presents great interest in operational forecasting and convective system process studies due to the relationship between convective storms and severe weather phenomena. This paper generates a novel methodology to determine convective initiation (CI) signatures associated with extreme convective systems, including extreme events. Based on the well-established area-overlapping technique, an adaptive brightness temperature threshold for identification and backward tracking with infrared data is introduced in order to better identify areas of deep convection associated with and embedded within larger cloud clusters. This is particularly important over SESA because ground-based weather radar observations are currently limited to particular areas. Extreme rain precipitation features (ERPFs) from Tropical Rainfall Measurement Mission are examined to quantify the full satellite-observed life cycle of extreme convective events, although this technique allows examination of other intense convection proxies such as the identification of overshooting tops. CI annual and diurnal cycles are analyzed and distinctive behaviors are observed for different regions over SESA. It is found that near principal mountain barriers, a bimodal diurnal CI distribution is observed denoting the existence of multiple CI triggers, while convective initiation over flat terrain has a maximum frequency in the afternoon.Fil: Cancelada, Maite. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Salio, Paola Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Vila, Daniel. National Institute for Space Research; BrasilFil: Nesbitt, Stephen William. University of Illinois at Urbana; Estados UnidosFil: Vidal, Luciano. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    NASA/MSFC FY-85 Atmospheric Processes Research Review

    Get PDF
    The two main areas of focus for the research program are global scale processes and mesoscale processes. Geophysical fluid processes, satellite doppler lidar, satellite data analysis, atmospheric electricity, doppler lidar wind research, and mesoscale modeling are among the topics covered

    A review of high impact weather for aviation meteorology

    Get PDF
    This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges

    Characterisation and predictability of a strong and a weak forcing severe convective event – a multi-data approach

    Get PDF
    Two severe summer-time convective events in Germany are investigated which can be classified by the prevailing synoptic conditions into a strong and a weak forcing case. The strong forcing case exhibits a larger scale precipitation pattern caused by frontal ascent whereas scattered convection is dominating the convective activity in the weak forcing case. Other distinguished differences between the cases are faster movement of convective cells and larger regions with significant loss mainly due to severe gusts in the strong forcing case. A comprehensive set of various observations is used to characterise the two different events. The observations include measurements from a lightning detection network, precipitation radar, geostationary satellite and weather stations, as well as information from an automated cell detection algorithm based on radar reflectivity which is combined with severe weather reports, and damage data from insurances. Forecast performance at various time scales is analysed ranging from nowcasting and warning to short- range forecasting. Various methods and models are examined, including human warnings, observation-based nowcasting algorithms and high-resolution ensemble prediction systems. The analysis shows the advantages of a multi-sensor and multi-source approach in characterising convective events and their impacts. Using data from various sources allows to combine the different strengths of observational data sets, especially in terms of spatial coverage or data accuracy, e.g. damage data from insurances provide good spatial coverage with little meteorological information while measurements at weather stations provide accurate but pointwise observations. Furthermore, using data from multiple sources allow for a better understanding of the convective life cycle. Several parameters from different instruments are shown to have a predictive skill for convective development, these include satellite-based cloud-top cooling rates as measure for intensive convective growth, 3D-radar reflectivity, mesocyclone detection from doppler radar, overshooting top detection or lightning jumps to evaluate storm intensification and formation of severe weather. This synergetic approach can help to improve nowcasting algorihtms and thus the warning process. The predictability of the analysed severe convective events differs with different types of forcing which is reflected in both, convective-scale ensemble prediction system forecasts and human weather warnings. Human warnings show larger false alarm rates in the weak forcing case. Ensemble predictions are able to capture the characteristics of the convective precipitation. The forecast skill is connected strongly to the synoptic situation and the presence of large-scale forcing increases the forecast skill. This has to be considered for potential future warn-on-forecast strategies

    High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System

    Get PDF
    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed

    Severe Storms Branch research report (April 1984 April 1985)

    Get PDF
    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior

    Studies of satellite support to weather modification in the western US region

    Get PDF
    The applications of meteorological satellite data to both summer and winter weather modification programs are addressed. Appraisals of the capability of satellites to assess seedability, to provide real-time operational support, and to assist in the post-experiment analysis of a seeding experiment led to the incorporation of satellite observing systems as a major component in the Bureau of Reclamations weather modification activities. Satellite observations are an integral part of the South Park Area cumulus experiment (SPACE) which aims to formulate a quantitative hypothesis for enhancing precipitation from orographically induced summertime mesoscale convective systems (orogenic mesoscale systems). Progress is reported in using satellite observations to assist in classifying the important mesoscale systems, and in defining their frequency and coverage, and potential area of effect. Satellite studies of severe storms are also covered

    Synergy of Multiple Satellite Observations in the Study of Cloud Thermodynamics of Tropical Deep Convection.

    Full text link
    Tropical convection lies at the heart of atmospheric research, especially for global weather and climate predictions; satellite measurements with large spatial coverage provide valuable information to deepen and broaden our scientific understandings of this subject. This thesis is motivated to utilize satellite measurements with assistance of modeling tools in a synergistic way to study tropical deep convection. First a generic parallax correction method is proposed to remove the biases resulting from the mismatch of satellite footprints due to different sensor viewing angles targeting the same object. Second a non-blackbody correction is proposed to better estimate cloud top temperature utilizing the vertical structure within the cloud top layer probed by CloudSat and CALIPSO. The distance between the physical cloud top and the effective emission level is shown to have a linear dependence on cloud top fuzziness (CTF; difference between cloud top and 10dBz radar echo) when CTF is less than ~2km. Beyond this threshold, the effective emission level remains 0.74km below the cloud top due to the saturation of IR absorption and emission. This relationship clearly improves simulated MODIS radiances comparing with the observed counterparts. The distribution of cloud top buoyancy for tropical deep convections derived using cloud top and ambient condition indicates that convective development is sensitive to both land-ocean contrast and diurnal cycle. Under certain assumptions, vertical velocity inside the convective core is derived and the result is consistent with typical vertical velocity profiles observed by air-bone Doppler radars for tropical deep convections, such as the altitude for the maximum vertical velocity and the existence of a weak detrainment layer in the mid-troposphere. GCM simulations indicate that overshooting deep convection could be responsible for the vertical transport of black carbon into the stratosphere especially over the India subcontinent during South Asia summer monsoon, and that black carbon in the stratosphere is transported upward at as large as twice the speed of water vapor transport. To explore a possible observational strategy for such injection of black carbon into the stratosphere, a limb-view infrared detection method is proposed based on forward modeling of radiative transfer and the simulated profiles.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/109016/1/cpwang_1.pd
    corecore