1,693 research outputs found

    Instrumenting gait with an accelerometer: A system and algorithm examination

    Get PDF
    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to the laboratory until relatively recently. The application of an inexpensive body worn sensor with appropriate gait algorithms (BWM) is an attractive alternative and offers the potential to assess gait in any setting. In this study we investigated the use of a low-cost BWM, compared to laboratory reference using a robust testing protocol in both younger and older adults. We observed that the BWM is a valid tool for estimating total step count and mean spatio-temporal gait characteristics however agreement for variability and asymmetry results was poor. We conducted a detailed investigation to explain the poor agreement between systems and determined it was due to inherent differences between the systems rather than inability of the sensor to measure the gait characteristics. The results highlight caution in the choice of reference system for validation studies. The BWM used in this study has the potential to gather longitudinal (real-world) spatio-temporal gait data that could be readily used in large lifestyle-based intervention studies, but further refinement of the algorithm(s) is required

    Instrumenting gait with an accelerometer: A system and algorithm examination

    Get PDF
    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to the laboratory until relatively recently. The application of an inexpensive body worn sensor with appropriate gait algorithms (BWM) is an attractive alternative and offers the potential to assess gait in any setting. In this study we investigated the use of a low-cost BWM, compared to laboratory reference using a robust testing protocol in both younger and older adults. We observed that the BWM is a valid tool for estimating total step count and mean spatio-temporal gait characteristics however agreement for variability and asymmetry results was poor. We conducted a detailed investigation to explain the poor agreement between systems and determined it was due to inherent differences between the systems rather than inability of the sensor to measure the gait characteristics. The results highlight caution in the choice of reference system for validation studies. The BWM used in this study has the potential to gather longitudinal (real-world) spatio-temporal gait data that could be readily used in large lifestyle-based intervention studies, but further refinement of the algorithm(s) is required

    Accuracy of Actigraphy Compared to Concomitant Ambulatory Polysomnography in Narcolepsy and Other Sleep Disorders

    Get PDF
    Actigraphy provides longitudinal sleep data over multiple nights. It is a less expensive and less cumbersome method for measuring sleep than polysomnography. Studies assessing accuracy of actigraphy compared to ambulatory polysomnography in different sleep-disordered patients are rare. We aimed to compare the concordance between these methods in clinical setting. We included 290 clinical measurements of 281 sleep laboratory patients (mean age 37.9 years, 182 female). Concomitant ambulatory polysomnography and actigraphy were analyzed to determine the agreement in patients with obstructive sleep apnea, narcolepsy, periodic leg movement disorder, hypersomnia, other rarer sleep disorders, or no organic sleep disorder. Bland-Altman plots showed excellent accuracy, but poor precision in single night results between the two methods in the measurement of sleep time, sleep efficiency, and sleep latency. On average, actigraphy tended to overestimate sleep time by a negligible amount, -0.13 min, 95% confidence interval [-5.9, 5.6] min in the whole sample. Overestimation was largest, -12.8 [-25.1, -0.9] min, in patients with obstructive sleep apnea. By contrast, in patients with narcolepsy, actigraphy tended to underestimate sleep time by 24.3 [12.4, 36.1] min. As for sleep efficiency, actigraphy underestimated it by 0.18 [-0.99, 1.35] % and sleep latency by 11.0 [8.5, 13.6] min compared to polysomnography. We conclude that, in measuring sleep time, actigraphy is reasonably reliable and helpful to be used for a week or two to exclude insufficient sleep in patients with the suspicion of narcolepsy. However, the effectiveness of actigraphy in determining sleep seems to decrease in subjects with low sleep efficiencies.Peer reviewe

    A safety assessment framework for Automatic Dependent Surveillance Broadcast (ADS-B) and its potential impact on aviation safety

    Get PDF
    The limitations of the current civil aviation surveillance systems include a lack of coverage in some areas and low performance in terms of accuracy, integrity, continuity and availability particularly in high density traffic areas including airports, with a negative impact on capacity and safety. Automatic Dependent Surveillance Broadcast (ADS-B) technology has been proposed to address these limitations by enabling improved situational awareness for all stakeholders and enhanced airborne and ground surveillance, resulting in increased safety and capacity. In particular, its scalability and adaptability should facilitate its use in general aviation and in ground vehicles. This should, in principle, provide affordable, effective surveillance of all air and ground traffic, even on airport taxiways and runways, and in airspace where radar is ineffective or unavailable. The success of the progressive implementation of ADS-B has led to numerous programmes for its introduction in other parts of the World where the operational environment is considerably different from that of Australia. However, a number of critical issues must be addressed in order to benefit from ADS-B, including the development and execution of a safety case that addresses both its introduction into legacy and new systems’ operational concepts, the latter including the Single European Sky (SES) / Single European Sky ATM Research (SESAR) and the US’ Next Generation Air Transportation System (NexGEN). This requires amongst others, a good understanding of the limitations of existing surveillance systems, ADS-B architecture and system failures and its interfaces to the existing and future ATM systems. Research on ADS-B to date has not addressed in detail the important questions of limitations of existing systems and ADS-B failure modes including their characterisation, modelling and assessment of impact. The latter is particularly important due to the sole dependency of ADS-B on GNSS for information on aircraft state and its reliance on communication technologies such as Mode-S Extended Squitter, VHF Data Link Mode-4 (VDLM4) or Universal Access Transceiver (UAT), to broadcast the surveillance information to ground-based air traffic control (ATC) and other ADS-B equipped aircraft within a specified range, all of which increase complexity and the potential for failures. This thesis proposes a novel framework for the assessment of the ADS-B system performance to meet the level of safety required for ground and airborne surveillance operations. The framework integrates various methods for ADS-B performance assessment in terms of accuracy, integrity, continuity, availability and latency, and reliability assessment using probabilistic safety assessment methods; customized failure mode identification approach and fault tree analysis. Based on the framework, the thesis develops a failure mode register for ADS-B, identifies and quantifies the impact of a number of potential hazards for the ADS-B. Furthermore, this thesis identifies various anomalies in the onboard GNSS system that feeds aircraft navigation information into the ADS-B system. Finally, the thesis maps the ADS-B data availability and the quantified system performance to the envisioned airborne surveillance application’s requirements. The mapping exercise indicates that, the quantified ADS-B accuracy is sufficient for all applications while ADS-B integrity is insufficient to support the most stringent application: Airborne Separation (ASEP). In addition, some of the required performance parameters are unavailable from aircraft certified to DO-260 standard. Therefore, all aircraft must be certified to DO-260B standard to support the applications and perform continuous monitoring, to ensure consistency in the system performance of each aircraft.Open Acces
    • …
    corecore