71,348 research outputs found

    A context-based approach for partitioning big data

    Get PDF
    In recent years, the amount of available data keeps growing at fast rate, and it is therefore crucial to be able to process them in an efficient way. The level of parallelism in tools such as Hadoop or Spark is determined, among other things, by the partitioning applied to the dataset. A common method is to split the data into chunks considering the number of bytes. While this approach may work well for text-based batch processing, there are a number of cases where the dataset contains structured information, such as the time or the spatial coordinates, and one may be interested in exploiting such a structure to improve the partitioning. This could have an impact on the processing time and increase the overall resource usage efficiency. This paper explores an approach based on the notion of context, such as temporal or spatial information, for partitioning the data. We design a context-based multi-dimensional partitioning technique that divides an n 12dimensional space into splits by considering the distribution of the each contextual dimension in the dataset. We tested our approach on a dataset from a touristic scenario, and our experiments show that we are able to improve the efficiency of the resource usage

    HeteroCore GPU to exploit TLP-resource diversity

    Get PDF

    AIOps for a Cloud Object Storage Service

    Full text link
    With the growing reliance on the ubiquitous availability of IT systems and services, these systems become more global, scaled, and complex to operate. To maintain business viability, IT service providers must put in place reliable and cost efficient operations support. Artificial Intelligence for IT Operations (AIOps) is a promising technology for alleviating operational complexity of IT systems and services. AIOps platforms utilize big data, machine learning and other advanced analytics technologies to enhance IT operations with proactive actionable dynamic insight. In this paper we share our experience applying the AIOps approach to a production cloud object storage service to get actionable insights into system's behavior and health. We describe a real-life production cloud scale service and its operational data, present the AIOps platform we have created, and show how it has helped us resolving operational pain points.Comment: 5 page

    Pregelix: Big(ger) Graph Analytics on A Dataflow Engine

    Full text link
    There is a growing need for distributed graph processing systems that are capable of gracefully scaling to very large graph datasets. Unfortunately, this challenge has not been easily met due to the intense memory pressure imposed by process-centric, message passing designs that many graph processing systems follow. Pregelix is a new open source distributed graph processing system that is based on an iterative dataflow design that is better tuned to handle both in-memory and out-of-core workloads. As such, Pregelix offers improved performance characteristics and scaling properties over current open source systems (e.g., we have seen up to 15x speedup compared to Apache Giraph and up to 35x speedup compared to distributed GraphLab), and makes more effective use of available machine resources to support Big(ger) Graph Analytics

    On the usage of the probability integral transform to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems

    Full text link
    We present a new distributed fuzzy partitioning method to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems. The proposed algorithm builds a fixed number of fuzzy sets for all variables and adjusts their shape and position to the real distribution of training data. A two-step process is applied : 1) transformation of the original distribution into a standard uniform distribution by means of the probability integral transform. Since the original distribution is generally unknown, the cumulative distribution function is approximated by computing the q-quantiles of the training set; 2) construction of a Ruspini strong fuzzy partition in the transformed attribute space using a fixed number of equally distributed triangular membership functions. Despite the aforementioned transformation, the definition of every fuzzy set in the original space can be recovered by applying the inverse cumulative distribution function (also known as quantile function). The experimental results reveal that the proposed methodology allows the state-of-the-art multi-way fuzzy decision tree (FMDT) induction algorithm to maintain classification accuracy with up to 6 million fewer leaves.Comment: Appeared in 2018 IEEE International Congress on Big Data (BigData Congress). arXiv admin note: text overlap with arXiv:1902.0935

    On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark

    Full text link
    Querying very large RDF data sets in an efficient manner requires a sophisticated distribution strategy. Several innovative solutions have recently been proposed for optimizing data distribution with predefined query workloads. This paper presents an in-depth analysis and experimental comparison of five representative and complementary distribution approaches. For achieving fair experimental results, we are using Apache Spark as a common parallel computing framework by rewriting the concerned algorithms using the Spark API. Spark provides guarantees in terms of fault tolerance, high availability and scalability which are essential in such systems. Our different implementations aim to highlight the fundamental implementation-independent characteristics of each approach in terms of data preparation, load balancing, data replication and to some extent to query answering cost and performance. The presented measures are obtained by testing each system on one synthetic and one real-world data set over query workloads with differing characteristics and different partitioning constraints.Comment: 16 pages, 3 figure

    Scalable distributed event detection for Twitter

    Get PDF
    Social media streams, such as Twitter, have shown themselves to be useful sources of real-time information about what is happening in the world. Automatic detection and tracking of events identified in these streams have a variety of real-world applications, e.g. identifying and automatically reporting road accidents for emergency services. However, to be useful, events need to be identified within the stream with a very low latency. This is challenging due to the high volume of posts within these social streams. In this paper, we propose a novel event detection approach that can both effectively detect events within social streams like Twitter and can scale to thousands of posts every second. Through experimentation on a large Twitter dataset, we show that our approach can process the equivalent to the full Twitter Firehose stream, while maintaining event detection accuracy and outperforming an alternative distributed event detection system
    • …
    corecore