14,440 research outputs found

    Issues in knowledge representation to support maintainability: A case study in scientific data preparation

    Get PDF
    Scientific data preparation is the process of extracting usable scientific data from raw instrument data. This task involves noise detection (and subsequent noise classification and flagging or removal), extracting data from compressed forms, and construction of derivative or aggregate data (e.g. spectral densities or running averages). A software system called PIPE provides intelligent assistance to users developing scientific data preparation plans using a programming language called Master Plumber. PIPE provides this assistance capability by using a process description to create a dependency model of the scientific data preparation plan. This dependency model can then be used to verify syntactic and semantic constraints on processing steps to perform limited plan validation. PIPE also provides capabilities for using this model to assist in debugging faulty data preparation plans. In this case, the process model is used to focus the developer's attention upon those processing steps and data elements that were used in computing the faulty output values. Finally, the dependency model of a plan can be used to perform plan optimization and runtime estimation. These capabilities allow scientists to spend less time developing data preparation procedures and more time on scientific analysis tasks. Because the scientific data processing modules (called fittings) evolve to match scientists' needs, issues regarding maintainability are of prime importance in PIPE. This paper describes the PIPE system and describes how issues in maintainability affected the knowledge representation used in PIPE to capture knowledge about the behavior of fittings

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Intelligent assistant system as a context-aware decision-making support for the workers of the future

    Get PDF
    International audienceThe key role of information and communication technologies (ICT) to improve manufacturing productivity within the paradigm of factory of the future is often proved. These tools are used in a wide range of product lifecycle activities, from the early design phase to product recycling. Generally, the assistance tools are mainly dedicated to the management board and fewer initiatives focus on the operational needs of the worker at the shop-floor level. This paper proposes a context-aware knowledge-based system dedicated to support the actors of the factory by the right information at the right time and in the appropriate format regarding their context of work and level of expertise. Particularly, specific assistance functionalities are dedicated to the workers in charge of the machine configuration and the realization of manufacturing operations. PGD-based (Proper Generalized Decomposition) algorithms are used for real time simulation of industrial processes and machine configuration. At the conceptual level, a semantic model is proposedas key enablersfor the structuration of the knowledge-based system
    • …
    corecore