964 research outputs found

    Social media bot detection with deep learning methods: a systematic review

    Get PDF
    Social bots are automated social media accounts governed by software and controlled by humans at the backend. Some bots have good purposes, such as automatically posting information about news and even to provide help during emergencies. Nevertheless, bots have also been used for malicious purposes, such as for posting fake news or rumour spreading or manipulating political campaigns. There are existing mechanisms that allow for detection and removal of malicious bots automatically. However, the bot landscape changes as the bot creators use more sophisticated methods to avoid being detected. Therefore, new mechanisms for discerning between legitimate and bot accounts are much needed. Over the past few years, a few review studies contributed to the social media bot detection research by presenting a comprehensive survey on various detection methods including cutting-edge solutions like machine learning (ML)/deep learning (DL) techniques. This paper, to the best of our knowledge, is the first one to only highlight the DL techniques and compare the motivation/effectiveness of these techniques among themselves and over other methods, especially the traditional ML ones. We present here a refined taxonomy of the features used in DL studies and details about the associated pre-processing strategies required to make suitable training data for a DL model. We summarize the gaps addressed by the review papers that mentioned about DL/ML studies to provide future directions in this field. Overall, DL techniques turn out to be computation and time efficient techniques for social bot detection with better or compatible performance as traditional ML techniques

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Deep Neural Networks for Bot Detection

    Full text link
    The problem of detecting bots, automated social media accounts governed by software but disguising as human users, has strong implications. For example, bots have been used to sway political elections by distorting online discourse, to manipulate the stock market, or to push anti-vaccine conspiracy theories that caused health epidemics. Most techniques proposed to date detect bots at the account level, by processing large amount of social media posts, and leveraging information from network structure, temporal dynamics, sentiment analysis, etc. In this paper, we propose a deep neural network based on contextual long short-term memory (LSTM) architecture that exploits both content and metadata to detect bots at the tweet level: contextual features are extracted from user metadata and fed as auxiliary input to LSTM deep nets processing the tweet text. Another contribution that we make is proposing a technique based on synthetic minority oversampling to generate a large labeled dataset, suitable for deep nets training, from a minimal amount of labeled data (roughly 3,000 examples of sophisticated Twitter bots). We demonstrate that, from just one single tweet, our architecture can achieve high classification accuracy (AUC > 96%) in separating bots from humans. We apply the same architecture to account-level bot detection, achieving nearly perfect classification accuracy (AUC > 99%). Our system outperforms previous state of the art while leveraging a small and interpretable set of features yet requiring minimal training data
    corecore