854 research outputs found

    Information-theoretic Capacity of Clustered Random Networks

    Full text link
    We analyze the capacity scaling laws of clustered ad hoc networks in which nodes are distributed according to a doubly stochastic shot-noise Cox process. We identify five different operational regimes, and for each regime we devise a communication strategy that allows to achieve a throughput to within a poly-logarithmic factor (in the number of nodes) of the maximum theoretical capacity.Comment: 6 pages, in Proceedings of ISIT 201

    Connectivity, Coverage and Placement in Wireless Sensor Networks

    Get PDF
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes

    Control and optimization approaches for energy-limited systems: applications to wireless sensor networks and battery-powered vehicles

    Get PDF
    This dissertation studies control and optimization approaches to obtain energy-efficient and reliable routing schemes for battery-powered systems in network settings. First, incorporating a non-ideal battery model, the lifetime maximization problem for static wireless sensor networks is investigated. Adopting an optimal control approach, it is shown that there exists a time-invariant optimal routing vector in a fixed topology network. Furthermore, under very mild conditions, this optimal policy is robust with respect to the battery model used. Then, the lifetime maximization problem is investigated for networks with a mobile source node. Redefining the network lifetime, two versions of the problem are studied: when there exist no prior knowledge about the source node’s motion dynamics vs. when source node’s trajectory is known in advance. For both cases, problems are formulated in the optimal control framework. For the former, the solution can be reduced to a sequence of nonlinear programming problems solved on line as the source node trajectory evolves. For the latter, an explicit off-line numerical solution is required. Second, the problem of routing for vehicles with limited energy through a network with inhomogeneous charging nodes is studied. The goal is to minimize the total elapsed time, including traveling and recharging time, for vehicles to reach their destinations. Adopting a game-theoretic approach, the problem is investigated from two different points of view: user-centric vs. system-centric. The former is first formulated as a mixed integer nonlinear programming problem. Then, by exploiting properties of an optimal solution, it is reduced to a lower dimensionality problem. For the latter, grouping vehicles into subflows and including the traffic congestion effects, a system-wide optimization problem is defined. Both problems are studied in a dynamic programming framework as well. Finally, the thesis quantifies the Price Of Anarchy (POA) in transportation net- works using actual traffic data. The goal is to compare the network performance under user-optimal vs. system-optimal policies. First, user equilibria flows and origin- destination demands are estimated for the Eastern Massachusetts transportation net- work using speed and capacity datasets. Then, obtaining socially-optimal flows by solving a system-centric problem, the POA is estimated

    Secure Dual-Functional Radar-Communication Transmission: Exploiting Interference for Resilience Against Target Eavesdropping

    Get PDF
    We study security solutions for dual-functional radar communication (DFRC) systems, which detect the radar target and communicate with downlink cellular users in millimeter-wave (mmWave) wireless networks simultaneously. Uniquely for such scenarios, the radar target is regarded as a potential eavesdropper which might surveil the information sent from the base station (BS) to communication users (CUs), that is carried by the radar probing signal. Transmit waveform and receive beamforming are jointly designed to maximize the signal-to-interference-plus-noise ratio (SINR) of the radar under the security and power budget constraints. We apply a Directional Modulation (DM) approach to exploit constructive interference (CI), where the known multiuser interference (MUI) can be exploited as a source of useful signal. Moreover, to further deteriorate the eavesdropping signal at the radar target, we utilize destructive interference (DI) by pushing the received symbols at the target towards the destructive region of the signal constellation. Our numerical results verify the effectiveness of the proposed design showing a secure transmission with enhanced performance against benchmark DFRC techniques

    Secure Dual-Functional Radar-Communication Transmission: Exploiting Interference for Resilience Against Target Eavesdropping

    Get PDF
    We study security solutions for dual-functional radar communication (DFRC) systems, which detect the radar target and communicate with downlink cellular users in millimeter-wave (mmWave) wireless networks simultaneously. Uniquely for such scenarios, the radar target is regarded as a potential eavesdropper which might surveil the information sent from the base station (BS) to communication users (CUs), that is carried by the radar probing signal. Transmit waveform and receive beamforming are jointly designed to maximize the signal-to-interference-plus-noise ratio (SINR) of the radar under the security and power budget constraints. We apply a Directional Modulation (DM) approach to exploit constructive interference (CI), where the known multiuser interference (MUI) can be exploited as a source of useful signal. Moreover, to further deteriorate the eavesdropping signal at the radar target, we utilize destructive interference (DI) by pushing the received symbols at the target towards the destructive region of the signal constellation. Our numerical results verify the effectiveness of the proposed design showing a secure transmission with enhanced performance against benchmark DFRC techniques

    Physical Layer Security in Integrated Sensing and Communication Systems

    Get PDF
    The development of integrated sensing and communication (ISAC) systems has been spurred by the growing congestion of the wireless spectrum. The ISAC system detects targets and communicates with downlink cellular users simultaneously. Uniquely for such scenarios, radar targets are regarded as potential eavesdroppers which might surveil the information sent from the base station (BS) to communication users (CUs) via the radar probing signal. To address this issue, we propose security solutions for ISAC systems to prevent confidential information from being intercepted by radar targets. In this thesis, we firstly present a beamformer design algorithm assisted by artificial noise (AN), which aims to minimize the signal-to-noise ratio (SNR) at the target while ensuring the quality of service (QoS) of legitimate receivers. Furthermore, to reduce the power consumed by AN, we apply the directional modulation (DM) approach to exploit constructive interference (CI). In this case, the optimization problem is designed to maximize the SINR of the target reflected echoes with CI constraints for each CU, while constraining the received symbols at the target in the destructive region. Apart from the separate functionalities of radar and communication systems above, we investigate sensing-aided physical layer security (PLS), where the ISAC BS first emits an omnidirectional waveform to search for and estimate target directions. Then, we formulate a weighted optimization problem to simultaneously maximize the secrecy rate and minimize the Cram\'er-Rao bound (CRB) with the aid of the AN, designing a beampattern with a wide main beam covering all possible angles of targets. The main beam width of the next iteration depends on the optimal CRB. In this way, the sensing and security functionalities provide mutual benefits, resulting in the improvement of mutual performances with every iteration of the optimization, until convergence. Overall, numerical results show the effectiveness of the ISAC security designs through the deployment of AN-aided secrecy rate maximization and CI techniques. The sensing-assisted PLS scheme offers a new approach for obtaining channel information of eavesdroppers, which is treated as a limitation of conventional PLS studies. This design gains mutual benefits in both single and multi-target scenarios
    corecore