11 research outputs found

    A Construction of Multisender Authentication Codes with Sequential Model from Symplectic Geometry over Finite Fields

    Get PDF
    Multisender authentication codes allow a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message. In this paper, we construct multisender authentication codes with sequential model from symplectic geometry over finite fields, and the parameters and the maximum probabilities of deceptions are also calculated

    Agile quantum cryptography and non-classical state generation

    Get PDF
    In the first half of this Thesis, we introduce a framework of “quantum cryptographic agility,” which allows for a resource-efficient swap of an underlying cryptographic protocol. Specifically, we introduce several schemes which perform the tasks of Digital Signatures and Secret Sharing. Our first achievement is an investigation of Quantum Digital Signatures (QDS) over a continuous-variables platform, consisting of phase-encoded coherent states and heterodyne phase detection. QDS allows for secure authentication of a classical message, while guaranteeing message transferability. For the first time, we prove security of CV QDS in the presence of an eavesdropper on the quantum channels. We then introduce a continuous variable (CV) Quantum Secret Sharing (QSS) protocol. Our security proof allows for classical information to be split and shared between multiple potentially dishonest recipients, while retaining security against collective beamsplitter and entangling-cloner attacks. In the last chapter of this half, we introduce another QDS scheme which runs over identical hardware setup to our QSS protocol. We analyse experimental data in which quantum coherent states were distributed at a rate of 1 GHz, which for QDS allows us to securely sign a message in less than 0.05 ms. In the second half of this Thesis we suggest and discuss a deterministic source of nonclassical light, which we call “PhoG”. Our source is based on the coherent diffusive photonics, relying on both coherent and dissipative evolution of the quantum state, and may be realised in an array of dissipatively-coupled laser-inscribed waveguides in a χ⁽³⁾ glass. We analyse the PhoG device with several analytical and numerical models and demonstrate that a coherent state input leads to a bright output state with strong photon-number squeezing. With minor reconfiguration our system can generate entanglement between spatially separated modes via a process analogous to four-wave mixing

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Subject Index Volumes 1–200

    Get PDF

    Security proof methods for quantum key distribution protocols

    Get PDF
    In this thesis we develop practical tools for quantum key distribution (QKD) security proofs. We apply the tools to provide security proofs for several protocols, ranging from discrete variable protocols in high dimensions, protocols with realistic implementations, measurement device independent QKD and continuous-variable QKD. The security proofs are based on the Devetak-Winter security framework [I. Devetak and A. Winter, Proc. of the Roy. Soc. of London Series A, 461, 207 (2005); B. Kraus, N. Gisin, and R. Renner, Phys. Rev. Lett., 95 080501 (2005)]. In the key rate calculation, it is often convenient to assume that the optimal attack is symmetric. Under the assumption that the parameter estimation is based on coarse-grained observations, we show that the optimal attack is symmetric, if the protocol and the postselection have sufficient symmetries. As an example we calculate the key rates of protocols using 2, d and d+1 mutually unbiased bases in d-dimensional Hilbert spaces. We investigate the connection between the optimal collective eavesdropping attack and the optimal cloning attack, in which the eavesdropper employs an optimal cloner to attack the protocol. We find that, in general, it does not hold that the optimal attack is an optimal cloner. However, there are classes of protocols, for which we can identify the optimal attack by an optimal cloner. We analyze protocols with mutually unbiased bases in d dimensions, and show that for the protocols with 2 and d+1 mutually unbiased bases the optimal attack is an optimal cloner, but for the protocols with d mutually unbiased bases, it is not. In optical implementations of the phase-encoded BB84 protocol, the bit information is usually encoded in the phase of two consecutive photon pulses generated in a Mach-Zehnder interferometer. In the actual experimental realization, the loss in the arms of the Mach-Zehnder interferometer is not balanced, for example because only one arm contains a lossy phase modulator. Since the imbalance changes the structure of the signals states and measurements, the BB84 security analysis no longer applies in this scenario. We provide a security proof for the unbalanced phase-encoded BB84. The loss does lower the key rate compared to a protocol without loss. However, for a realistic parameter regime, the same key rate is found by applying the original BB84 security analysis. Recently, the security of a measurement device-independent QKD setup with BB84 signal states was proven in Refs. [H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett., 108 (2012); S. L. Braunstein and S. Pirandola, Phys. Rev. Lett., 108 (2012)]. In this setup Alice and Bob send quantum states to an intermediate node, which performs the measurement, and is assumed to be controlled by Eve. We analyze the security of a measurement device-independent QKD protocol with B92 signal states, and calculate the key rates numerically for a realistic implementation. Based on our security proof we were able to prove the security of the strong reference pulse B92 protocol. We analyze the security of continuous-variable protocols using the entropic uncertainty relations established in Ref. [M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, Nature Physics 6, 659 (2010)] to provide an estimate of the key rate based on the observed first and second moments. We analyze a protocol with squeezed coherent states and the 2-state protocol with two coherent states with opposite phases
    corecore