643 research outputs found

    Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions

    Full text link
    We introduce the class of multiply constant-weight codes to improve the reliability of certain physically unclonable function (PUF) response. We extend classical coding methods to construct multiply constant-weight codes from known qq-ary and constant-weight codes. Analogues of Johnson bounds are derived and are shown to be asymptotically tight to a constant factor under certain conditions. We also examine the rates of the multiply constant-weight codes and interestingly, demonstrate that these rates are the same as those of constant-weight codes of suitable parameters. Asymptotic analysis of our code constructions is provided

    Repairable Replication-based Storage Systems Using Resolvable Designs

    Get PDF
    We consider the design of regenerating codes for distributed storage systems at the minimum bandwidth regeneration (MBR) point. The codes allow for a repair process that is exact and uncoded, but table-based. These codes were introduced in prior work and consist of an outer MDS code followed by an inner fractional repetition (FR) code where copies of the coded symbols are placed on the storage nodes. The main challenge in this domain is the design of the inner FR code. In our work, we consider generalizations of FR codes, by establishing their connection with a family of combinatorial structures known as resolvable designs. Our constructions based on affine geometries, Hadamard designs and mutually orthogonal Latin squares allow the design of systems where a new node can be exactly regenerated by downloading β≥1\beta \geq 1 packets from a subset of the surviving nodes (prior work only considered the case of β=1\beta = 1). Our techniques allow the design of systems over a large range of parameters. Specifically, the repetition degree of a symbol, which dictates the resilience of the system can be varied over a large range in a simple manner. Moreover, the actual table needed for the repair can also be implemented in a rather straightforward way. Furthermore, we answer an open question posed in prior work by demonstrating the existence of codes with parameters that are not covered by Steiner systems

    Leveraging Coding Techniques for Speeding up Distributed Computing

    Get PDF
    Large scale clusters leveraging distributed computing frameworks such as MapReduce routinely process data that are on the orders of petabytes or more. The sheer size of the data precludes the processing of the data on a single computer. The philosophy in these methods is to partition the overall job into smaller tasks that are executed on different servers; this is called the map phase. This is followed by a data shuffling phase where appropriate data is exchanged between the servers. The final so-called reduce phase, completes the computation. One potential approach, explored in prior work for reducing the overall execution time is to operate on a natural tradeoff between computation and communication. Specifically, the idea is to run redundant copies of map tasks that are placed on judiciously chosen servers. The shuffle phase exploits the location of the nodes and utilizes coded transmission. The main drawback of this approach is that it requires the original job to be split into a number of map tasks that grows exponentially in the system parameters. This is problematic, as we demonstrate that splitting jobs too finely can in fact adversely affect the overall execution time. In this work we show that one can simultaneously obtain low communication loads while ensuring that jobs do not need to be split too finely. Our approach uncovers a deep relationship between this problem and a class of combinatorial structures called resolvable designs. Appropriate interpretation of resolvable designs can allow for the development of coded distributed computing schemes where the splitting levels are exponentially lower than prior work. We present experimental results obtained on Amazon EC2 clusters for a widely known distributed algorithm, namely TeraSort. We obtain over 4.69Ă—\times improvement in speedup over the baseline approach and more than 2.6Ă—\times over current state of the art

    Generalizations of Cole's Systems

    Get PDF
    There are four resolvable Steiner triple systems on fifteen elements. Some generalizations of these systems are presented here

    New Product Theorems for Z-Cyclic Whist Tournaments

    Get PDF
    AbstractThe aim of this note is to show how existing product constructions for cyclic and 1-rotational block designs can be adapted to provide a highly effective method of obtaining product theorems for whist tournaments
    • …
    corecore