777 research outputs found

    A New Method for Multi-Bit and Qudit Transfer Based on Commensurate Waveguide Arrays

    Get PDF
    The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques

    Beyond Binary Search: Parallel In-Place Construction of Implicit Search Tree Layouts.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2018

    Twisted Permutation Codes

    Get PDF
    We introduce twisted permutation codes, which are frequency permutation arrays analogous to repetition permutation codes, namely, codes obtained from the repetition construction applied to a permutation code. In particular, we show that a lower bound for the minimum distance of a twisted permutation code is the minimum distance of a repetition permutation code. We give examples where this bound is tight, but more importantly, we give examples of twisted permutation codes with minimum distance strictly greater than this lower bound.Comment: 20 page

    Infrared Spectroscopy of Quantum Crossbars

    Full text link
    Infrared (IR) spectroscopy can be used as an important and effective tool for probing periodic networks of quantum wires or nanotubes (quantum crossbars, QCB) at finite frequencies far from the Luttinger liquid fixed point. Plasmon excitations in QCB may be involved in resonance diffraction of incident electromagnetic waves and in optical absorption in the IR part of the spectrum. Direct absorption of external electric field in QCB strongly depends on the direction of the wave vector q.{\bf q}. This results in two types of 1D→2D1D\to 2D dimensional crossover with varying angle of an incident wave or its frequency. In the case of QCB interacting with semiconductor substrate, capacitive contact between them does not destroy the Luttinger liquid character of the long wave QCB excitations. However, the dielectric losses on a substrate surface are significantly changed due to appearance of additional Landau damping. The latter is initiated by diffraction processes on QCB superlattice and manifests itself as strong but narrow absorption peaks lying below the damping region of an isolated substrate.SubmiComment: Submitted to Phys. Rev.

    Generalized Balanced Tournament Packings and Optimal Equitable Symbol Weight Codes for Power Line Communications

    Full text link
    Generalized balance tournament packings (GBTPs) extend the concept of generalized balanced tournament designs introduced by Lamken and Vanstone (1989). In this paper, we establish the connection between GBTPs and a class of codes called equitable symbol weight codes. The latter were recently demonstrated to optimize the performance against narrowband noise in a general coded modulation scheme for power line communications. By constructing classes of GBTPs, we establish infinite families of optimal equitable symbol weight codes with code lengths greater than alphabet size and whose narrowband noise error-correcting capability to code length ratios do not diminish to zero as the length grows

    Importance of Symbol Equity in Coded Modulation for Power Line Communications

    Full text link
    The use of multiple frequency shift keying modulation with permutation codes addresses the problem of permanent narrowband noise disturbance in a power line communications system. In this paper, we extend this coded modulation scheme based on permutation codes to general codes and introduce an additional new parameter that more precisely captures a code's performance against permanent narrowband noise. As a result, we define a new class of codes, namely, equitable symbol weight codes, which are optimal with respect to this measure

    Equivalence of Decoupling Schemes and Orthogonal Arrays

    Get PDF
    We consider the problem of switching off unwanted interactions in a given multi-partite Hamiltonian. This is known to be an important primitive in quantum information processing and several schemes have been presented in the literature to achieve this task. A method to construct decoupling schemes for quantum systems of pairwise interacting qubits was introduced by M. Stollsteimer and G. Mahler and is based on orthogonal arrays. Another approach based on triples of Hadamard matrices that are closed under pointwise multiplication was proposed by D. Leung. In this paper, we show that both methods lead to the same class of decoupling schemes. Moreover, we establish a characterization of orthogonal arrays by showing that they are equivalent to decoupling schemes which allow a refinement into equidistant time-slots. Furthermore, we show that decoupling schemes for networks of higher-dimensional quantum systems with t-local Hamiltonians can be constructed from classical error-correcting codes.Comment: 26 pages, latex, 1 figure in tex
    • 

    corecore