3,413 research outputs found

    Configuring Cloud-Service Interfaces Using Flow Inheritance

    Get PDF
    Pavel Zaichenkov, Olga Tveretina, Alex Shafarenko, ‘Configuring Cloud-Service Interfaces Using Flow Inheritance’, paper presented at iFMCloud'16: The First International Workshop on Formal Methods for and on the Cloud, Reykjavic, Iceland, 1- 4 June, 2016.Technologies for composition of loosely-coupled web services in a modular and flexible way are in high demand today. On the one hand, the services must be flexible enough to be reused in a variety of contexts. On the other hand, they must be specific enough so that their composition may be provably consistent. The existing technologies (WS-CDL, WSCI and session types) require a behavioural contract associated with each service, which is impossible to derive automatically. Furthermore, neither technology supports flow inheritance: a mechanism that automatically and transparently propagates data through service pipelines. This paper presents a novel mechanism for automatic interface configuration of such services. Instead of checking consistency of the behavioural contracts, our approachfocuses solely on that of data formats in the presence of subtyping, polymorphism and flow inheritance. The paper presents a toolchain that automatically derives service interfaces from the code and performs interface configuration taking non-local constraints into account. Although the configuration mechanism is global, the services are compiled separately. As a result, the mechanism does not raise source security issues despite global service availability in adaptable form.Peer reviewe

    A Methodology for Engineering Collaborative and ad-hoc Mobile Applications using SyD Middleware

    Get PDF
    Today’s web applications are more collaborative and utilize standard and ubiquitous Internet protocols. We have earlier developed System on Mobile Devices (SyD) middleware to rapidly develop and deploy collaborative applications over heterogeneous and possibly mobile devices hosting web objects. In this paper, we present the software engineering methodology for developing SyD-enabled web applications and illustrate it through a case study on two representative applications: (i) a calendar of meeting application, which is a collaborative application and (ii) a travel application which is an ad-hoc collaborative application. SyD-enabled web objects allow us to create a collaborative application rapidly with limited coding effort. In this case study, the modular software architecture allowed us to hide the inherent heterogeneity among devices, data stores, and networks by presenting a uniform and persistent object view of mobile objects interacting through XML/SOAP requests and responses. The performance results we obtained show that the application scales well as we increase the group size and adapts well within the constraints of mobile devices

    Modeling Web Service Selection for Composition as a Distributed Constraint Optimization Problem (DCOP)

    Get PDF
    During development of a Service-oriented Application, some software pieces could be fulfilled by the connection to Web Services. A list of candidate Web Services could be obtained by making use of any service discovery registry, which are then selected and integrated into the application. However, when it comes to a distributed system, multiple functional and non-functional constraints arise from the interaction between several service requesters and providers, particularly when composing different services. To overcome with such constraints, in this work we propose to model service selection and composition scenarios as Distributed Constraints Optimization Problems (DCOP).We propose different modeling approaches and develop representative examples to be solved through different DCOP algorithms. Also, we analyze the impact of possible extensions to the model in the computability of the problem.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Injecting continuous time execution into service-oriented computing

    Get PDF
    Service-Oriented Computing is a computing paradigm that utilizes services as fundamental elements to support rapid, low-cost development of distributed applications in heterogeneous environments. In Service-Oriented Computing, a service is defined as an independent and autonomous piece of functionality which can be described, published, discovered and used in a uniform way. SENSORIA Reference Modeling Language is developed in the IST-FET integrated project. It provides a formal abstraction for services at the business level. Hybrid systems arise in embedded control when components that perform discrete changes are coupled with components that perform continuous processes. Normally, the discrete changes can be modeled by finite-state machines and the continuous processes can be modeled by differential equations. In an abstract point of view, hybrid systems are mixtures of continuous dynamics and discrete events. Hybrid systems are studied in different research areas. In the computer science area, a hybrid system is modeled as a discrete computer program interacting with an analog environment. In this thesis, we inject continuous time execution into Service-Oriented Computing by giving a formal abstraction for hybrid systems at the business level in a Service-Oriented point of view, and develop a method for formal verifications. In order to achieve the first part of this goal, we make a hybrid extension of Service-Oriented Doubly Labeled Transition Systems, named with Service-Oriented Hybrid Doubly Labeled Transition Systems, make an extension of the SENSORIA Reference Modeling Language and interpret it over Service-Oriented Hybrid Doubly Labeled Transition Systems. To achieve the second part of this goal, we adopt Temporal Dynamic Logic formulas and a set of sequent calculus rules for verifying the formulas, and develop a method for transforming the SENSORIA Reference Modeling Language specification of a certain service module into the respective Temporal Dynamic Logic formulas that could be verified. Moreover, we provide a case study of a simplified small part of the European Train Control System which is specified and verified with the approach introduced above. We also provide an approach of implementing the case study model with the IBM Websphere Process Server, which is a comprehensive Service-Oriented Architecture integration platform and provides support for the Service Component Architecture programming model. In order to realize this approach, we also provide functions that map models specified with the SENSORIA Reference Modeling Language to Websphere Process Server applications

    Non-Local Configuration of Component Interfaces by Constraint Satisfaction

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s10601-020-09309-y.Service-oriented computing is the paradigm that utilises services as fundamental elements for developing applications. Service composition, where data consistency becomes especially important, is still a key challenge for service-oriented computing. We maintain that there is one aspect of Web service communication on the data conformance side that has so far escaped the researchers attention. Aggregation of networked services gives rise to long pipelines, or quasi-pipeline structures, where there is a profitable form of inheritance called flow inheritance. In its presence, interface reconciliation ceases to be a local procedure, and hence it requires distributed constraint satisfaction of a special kind. We propose a constraint language for this, and present a solver which implements it. In addition, our approach provides a binding between the language and C++, whereby the assignment to the variables found by the solver is automatically translated into a transformation of C++ code. This makes the C++ Web service context compliant without any further communication. Besides, it uniquely permits a very high degree of flexibility of a C++ coded Web service without making public any part of its source code.Peer reviewe

    A Framework for Constraint-Programming based Configuration

    Get PDF

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Stage Configuration for Capital Goods:Supporting Order Capturing in Mass Customization

    Get PDF
    • …
    corecore