164 research outputs found

    MASCARET: multiagent system for virtual environment for training.

    Get PDF
    International audienceThis study concerns virtual environments for training in operational conditions. The principal developed idea is that these environments are heterogeneous and open multi-agent systems. The MASCARET model is proposed to organize the interactions between agents and to provide them reactive, cognitive and social abilities to simulate the physical and social environment. The physical environment represents, in a realistic way, the phenomena that learners and teachers have to take into account. The social environment is simulated by agents executing collaborative and adaptive tasks. These agents realize, in team, procedures that they have to adapt to the environment. The users participate to the training environment through their avatar. In this article, we show that MASCARET allows the establishment of models necessary to the creation of Intelligent Tutoring System. We interest notably to its use in pedagogical aspects

    A comparison of languages which operationalise and formalise {KADS} models of expertise

    Get PDF
    In the field of Knowledge Engineering, dissatisfaction with the rapid-prototyping approach has led to a number of more principled methodologies for the construction of knowledge-based systems. Instead of immediately implementing the gathered and interpreted knowledge in a given implementation formalism according to the rapid-prototyping approach, many such methodologies centre around the notion of a conceptual model: an abstract, implementation independent description of the relevant problem solving expertise. A conceptual model should describe the task which is solved by the system and the knowledge which is required by it. Although such conceptual models have often been formulated in an informal way, recent years have seen the advent of formal and operational languages to describe such conceptual models more precisely, and operationally as a means for model evaluation. In this paper, we study a number of such formal and operational languages for specifying conceptual models. In order to enable a meaningful comparison of such languages, we focus on languages which are all aimed at the same underlying conceptual model, namely that from the KADS method for building KBS. We describe eight formal languages for KADS models of expertise, and compare these languages with respect to their modelling primitives, their semantics, their implementations and their applications. Future research issues in the area of formal and operational specification languages for KBS are identified as the result of studying these languages. The paper also contains an extensive bibliography of research in this area

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Third Conference on Artificial Intelligence for Space Applications, part 1

    Get PDF
    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed

    Semantic Web methods for knowledge management [online]

    Get PDF

    Interaction Analysis in Smart Work Environments through Fuzzy Temporal Logic

    Get PDF
    Interaction analysis is defined as the generation of situation descriptions from machine perception. World models created through machine perception are used by a reasoning engine based on fuzzy metric temporal logic and situation graph trees, with optional parameter learning and clustering as preprocessing, to deduce knowledge about the observed scene. The system is evaluated in a case study on automatic behavior report generation for staff training purposes in crisis response control rooms

    Interaction Analysis in Smart Work Environments through Fuzzy Temporal Logic

    Get PDF
    Interaction analysis is defined as the generation of situation descriptions from machine perception. World models created through machine perception are used by a reasoning engine based on fuzzy metric temporal logic and situation graph trees, with optional parameter learning and clustering as preprocessing, to deduce knowledge about the observed scene. The system is evaluated in a case study on automatic behavior report generation for staff training purposes in crisis response control rooms
    corecore