20,907 research outputs found

    Simulation study for investment decisions on the EcoBoost camshaft machining line

    Get PDF
    Design/redesign of manufacturing systems is a complex, risky, and expensive task. Ford Motor Company’s Valencia Engine Plant faces this challenge as it plans to upgrade its machining and assembly lines to introduce the new EcoBoost engines. The research project described in this paper aimed to support the transition process particularly at the camshaft machining line by using simulation modelling techniques. A series of experiments was carried out using the simulation model developed, and recommendations were proposed based on the results of these experiments to support the decision as to where to invest on the line. The outcomes from the research project indicated that investment is required in terms of increasing the capacity of two bottleneck operations through retooling and improving the conveyor routing logic in one key area. Keywords: simulation modelling, closed-loop network, automotive production system

    References to past designs

    Get PDF
    Designing by adaptation is almost invariably a dominantambiguity feature of designing, and references to past designs are ubiquitous in design discourse. Object references serve as indices into designers' stocks of design concepts, in which memories for concrete embodiments and exemplars are tightly bound to solution principles. Thinking and talking by reference to past designs serves as a way to reduce the overwhelming complexity of complex design tasks by enabling designers to use parsimonious mental representations to which details can be added as needed. However object references can be ambiguous, and import more of the past design than is intended or may be desirable

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    On-line planning and scheduling: an application to controlling modular printers

    Get PDF
    We present a case study of artificial intelligence techniques applied to the control of production printing equipment. Like many other real-world applications, this complex domain requires high-speed autonomous decision-making and robust continual operation. To our knowledge, this work represents the first successful industrial application of embedded domain-independent temporal planning. Our system handles execution failures and multi-objective preferences. At its heart is an on-line algorithm that combines techniques from state-space planning and partial-order scheduling. We suggest that this general architecture may prove useful in other applications as more intelligent systems operate in continual, on-line settings. Our system has been used to drive several commercial prototypes and has enabled a new product architecture for our industrial partner. When compared with state-of-the-art off-line planners, our system is hundreds of times faster and often finds better plans. Our experience demonstrates that domain-independent AI planning based on heuristic search can flexibly handle time, resources, replanning, and multiple objectives in a high-speed practical application without requiring hand-coded control knowledge

    Proof Planning for Maintainable Configuration Systems

    Get PDF
    corecore