119 research outputs found

    An optimal procedure for the resource-constrained project scheduling problem with discounted cash flows and generalized precedence relations.

    Get PDF
    In this paper, we study the resource-constrained project scheduling problem (RCPSP) with discounted cash flows and generalized precedence relations (further denoted as RCPSPDC-GPR). The RCPSPDC-GPR extends the RCPSP to (a) arbitrary minimal and maximal time lags between the starting and completion times of activities and (b) the non-regular objective function of maximizing the net present value of the project with positive and/or negative cash flows associated with the activities.). To the best of our knowledge, the literature on the RCPSPDC-GPR is completely void. We present a depth-first branch-and-bound algorithm in which the nodes in the search tree represent the original project network extended with extra precedence relations which resolve a number of resource conflicts. These conflicts are resolved using the concept of a minimal delaying mode (De Reyck and Herroelen, 1996b). An upper bound on the project net present value as well as several dominance rules are used to fathom large portions of the search tree. Extensive computational experience on a randomly generated benchmark problem set is obtained.Scheduling; Optimal; Discounted cash flow; Cash flow;

    An optimal procedure for the unconstrained max-NPV project scheduling problem with generalized precedence relations.

    Get PDF
    The unconstrained max-npv project scheduling problem involves the scheduling of the activities of a project in order to maximize its net present value. Assume a project represented in activity-on-mode (AoN) notation, in which the activities have a known duration and are subject to technological precedence constraints. Throughout each activity, a series of cash outflows and receipts may occur, which allows for the computation of a terminal cash flow value (positive or negative) upon the completion. The project is to be scheduled against a fixed deadline in the absence of resource constraints. Several procedures have been presented in the literature to cope with this problem. In this paper, we describe how one of the most efficient optimal procedures can be adapted to cope with generalized precedence relations, which introduce arbitrary minimal and maximal time lags between the start and completion of activities. The procedure has been programmed in Microsoft° Visual ++ 2.0 under Windows NT for use on a personal computer. Extensive computational results are reported.Scheduling; Optimal;

    Solving the Resource Constrained Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation

    Full text link
    The technical report presents a generic exact solution approach for minimizing the project duration of the resource-constrained project scheduling problem with generalized precedences (Rcpsp/max). The approach uses lazy clause generation, i.e., a hybrid of finite domain and Boolean satisfiability solving, in order to apply nogood learning and conflict-driven search on the solution generation. Our experiments show the benefit of lazy clause generation for finding an optimal solutions and proving its optimality in comparison to other state-of-the-art exact and non-exact methods. The method is highly robust: it matched or bettered the best known results on all of the 2340 instances we examined except 3, according to the currently available data on the PSPLib. Of the 631 open instances in this set it closed 573 and improved the bounds of 51 of the remaining 58 instances.Comment: 37 pages, 3 figures, 16 table

    Phase transitions in project scheduling.

    Get PDF
    The analysis of the complexity of combinatorial optimization problems has led to the distinction between problems which are solvable in a polynomially bounded amount of time (classified in P) and problems which are not (classified in NP). This implies that the problems in NP are hard to solve whereas the problems in P are not. However, this analysis is based on worst-case scenarios. The fact that a decision problem is shown to be NP-complete or the fact that an optimization problem is shown to be NP-hard implies that, in the worst case, solving it is very hard. Recent computational results obtained with a well known NP-hard problem, namely the resource-constrained project scheduling problem, indicate that many instances are actually easy to solve. These results are in line with those recently obtained by researchers in the area of artificial intelligence, which show that many NP-complete problemsexhibit so-called phase transitions, resulting in a sudden and dramatic change of computational complexity based on one or more order parameters that are characteristic of the system as a whole. In this paper we provide evidence for the existence of phase transitions in various resource-constrained project scheduling problems. We discuss the use of network complexity measures and resource parameters as potential order parameters. We show that while the network complexity measures seem to reveal continuous easy-hard or hard-easy phase-transitions, the resource parameters exhibit an easy-hard-easy transition behaviour.Networks; Problems; Scheduling; Algorithms;

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    Unpacking the Role of Artificial Intelligence for a Multimodal Service System Design

    Get PDF
    Since requirements of service demands are becoming increasingly complex and diversified, one of the success factors of a multimodal service system is its capability to design a specific service instance satisfying a specific set of requirements. This capability is further highlighted in Ad Hoc Multimodal Service Systems (AHMSSs), where service instances rarely follow a standard form of service delivery and exist only for a limited time. However, due to the increasing scale and frequency of services in many business and public sectors, meeting the desired level of capability has become troublesome. A well-designed Artificial Intelligence (AI) approach can be a solution to the difficulty by addressing the underlying complexity and uncertainty of the AHMSS design process. To conceptualize and foster AI applications to an AHMSS, this study identifies key decision-making problems in the AHMSS design process and discusses the role of AI in the process. The results will form the basis for AI development and implementation for an AHMSS and relevant service systems

    A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations.

    Get PDF
    We present an optimal procedure for the resource-constrained project scheduling problem (RCPSP) with generalized precedence relations (further denoted as RCPSP-GPR) with the objective of minimizing the project makespan. The RCPSP-GPR extends the RCPSP to arbitrary minimal and maximal time lags between the starting and completion times of activities. The procedure is a depth-first branch-and-bound algorithm in which the nodes in the search tree represent the original project network extended with extra precedence relations which resolve a resource conflict present in the parent node. Resource conflicts are resolved using the concept of minimal delaying alternatives, i.e. minimal sets of activities which, when delayed, release enough resources to resolve the conflict. Precedence and resource-based lower bounds as well as dominance rules are used to fathom large portions of the search tree. The procedure can be extended to other regular measures of performance by some minor modifications. Even non-regular measures of performance, such as the maximinization of the net present value of the project or resource levelling objectives, can be handled. The procedure has been programmed in Microsoft* Visual C++ for use on a personal computer. Extensive computational experience is obtained.Scheduling;

    Including Generative Mechanisms in Project scheduling using Hybrid Simulation

    Full text link
    Scheduling is central to the practice of project management and a topic of significant interest for the operations research and management science academic communities. However, a rigour-relevance gap has developed between the research and practice of scheduling that mirrors similar concerns current in management science. Closing this gap requires a more accommodative philosophy that can integrate both hard and soft factors in the construction of project schedules. This paper outlines one interpretation of how this can be achieved through the combination of discrete event simulation for schedule construction and system dynamics for variable resource productivity. An implementation was built in a readily available modelling environment and its scheduling capabilities tested. They compare well with published results for commercial project scheduling packages. The use of system dynamics in schedule construction allows for the inclusion of generative mechanisms, models that describe the process by which some observed phenomenon is produced. They are powerful tools for answering questions about why things happen the way they do, a type of question very relevant to practic
    corecore