37 research outputs found

    Code Design for Visible Light Communications Under Illumination Constraints

    Get PDF
    Visible light communication (VLC) uses the same LEDs which are an efficient source of illumination to transmit information concurrently using optical direct-detection. As a result of modulating the LED to convey information, there may be a perceived change in the light perception which besides being annoying, may produce physiological consequences under prolonged exposure. The aim of this research is to propose code design methodologies for controlling the effects of light intensity flickering, brightness control, and color shifts due to the modulation, encoding information bits in organized optical symbol sequences, and improving the coding gain by the use of the Viterbi algorithm. In order to mitigate the effect of intensity flickering presented in On-Off Keying modulation, five codes are designed with two proposed algorithms using finite-state machines (FSMs) for constraining the runs of zeros or ones. The codes are compared with the codes proposed in the IEEE 802.15.7 standard on VLC (Manchester code, 4B6B code, and the 8B10B code) in terms of flicker mitigation using the perceived flicker index (PFI) (a mathematical measure of flicker introduced in this study) and error-rate performance. The designed codes show asymptotic coding gains between 1:25 and 6 dB with a low sacrifice in PFI. To avoid color shifts in color-shift keying (CSK) modulation, four codes were designed from optimally CSK constellations and two classes of codes where one class is based on FSMs and the other on trellis-coded modulation (TCM) according to the desired color perception constraint. The designed codes show asymptotic coding gains between 1:5 to 3:5 dB with respect to uncoded transmission. For brightness control, variable-weight multipulse pulse-position modulation (VW-MPPM) is introduced as an alternative for increasing the spectral efficiency by the selection of multipulse pulse-position modulation symbols of diverse weight to attain the desired dimming level. Combining VM-MPPM symbols with Huffman codes and TCM, two designed codes are compared with MPPM codes for dimming level of 0:67 and 0:40 showing an asymptotic coding gain of 0:94 and 1:29 dB, respectively. Finally, we show the trade-offs between coding gain improvement and their effects on light perception

    Heterogeneous integration of optical wireless communications within next generation networks

    Full text link
    Unprecedented traffic growth is expected in future wireless networks and new technologies will be needed to satisfy demand. Optical wireless (OW) communication offers vast unused spectrum and high area spectral efficiency. In this work, optical cells are envisioned as supplementary access points within heterogeneous RF/OW networks. These networks opportunistically offload traffic to optical cells while utilizing the RF cell for highly mobile devices and devices that lack a reliable OW connection. Visible light communication (VLC) is considered as a potential OW technology due to the increasing adoption of solid state lighting for indoor illumination. Results of this work focus on a full system view of RF/OW HetNets with three primary areas of analysis. First, the need for network densication beyond current RF small cell implementations is evaluated. A media independent model is developed and results are presented that provide motivation for the adoption of hyper dense small cells as complementary components within multi-tier networks. Next, the relationships between RF and OW constraints and link characterization parameters are evaluated in order to define methods for fair comparison when user-centric channel selection criteria are used. RF and OW noise and interference characterization techniques are compared and common OW characterization models are demonstrated to show errors in excess of 100x when dominant interferers are present. Finally, dynamic characteristics of hyper dense OW networks are investigated in order to optimize traffic distribution from a network-centric perspective. A Kalman Filter model is presented to predict device motion for improved channel selection and a novel OW range expansion technique is presented that dynamically alters coverage regions of OW cells by 50%. In addition to analytical results, the dissertation describes two tools that have been created for evaluation of RF/OW HetNets. A communication and lighting simulation toolkit has been developed for modeling and evaluation of environments with VLC-enabled luminaires. The toolkit enhances an iterative site based impulse response simulator model to utilize GPU acceleration and achieves 10x speedup over the previous model. A software defined testbed for OW has also been proposed and applied. The testbed implements a VLC link and a heterogeneous RF/VLC connection that demonstrates the RF/OW HetNet concept as proof of concept

    Efficient Bayesian inference for harmonic models via adaptive posterior factorization

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in NEUROCOMPUTING, [VOL72, ISSUE 1-3, (2008)] DOI10.1016/j.neucom.2007.12.05

    Investigation and Implementation of Dicode Pulse Position Modulation Over Indoor Visible Light Communication System

    Get PDF
    A visible light communication (VLC) system with green technology is available and enables users to use white LEDs for illumination as well as for high data rate transmission over wireless optical links. In addition, LEDs have advantages of low power consumption, high speed with power efficiency and low cost. Therefore, a great deal of research is considered for indoor VLC, as it offers huge bandwidth whilst using a significant modulation technique. This thesis is concerned with the investigation and implementation of the dicode pulse position modulation (DiPPM) scheme over a VLC link using white LED sources. Novel work is carried out for applying DiPPM over a VLC channel theoretically and experimentally including a comparison with digital PPM (DPPM) in order to examine the system performance. Moreover, a proposal of variable DiPPM (VDiPPM) is presented in this thesis for dimming control. The indoor VLC channel characteristics have been investigated for two propagation prototypes. Two models have been proposed and developed with DiPPM and DPPM being applied over the VLC channel. A computer simulation for the proposed models for both DiPPM and DPPM systems is performed in order to analyse the receiver sensitivity with the effect of intersymbol interference (ISI). Both systems are operating at 100 Mbps and 1 Gbps for a BER of 10-9. An improvement in sensitivity being achieved by the DiPPM compared to the DPPM VLC system. The system performance has been carried out by Mathcad software. The predicted DiPPM receiver sensitivity outperforms DPPM receiver at by -5.55 dBm and -8.24 dBm, at 1 Gbps data rate, and by -5.53 dBm and -8.22 dBm, at 100 Mbps, without and with guard intervals, respectively. In both cases the optical receiver sensitivity is increased when the ISI is ignored. These results based on the received optical power required by each modulation scheme. Further work has been done in mathematical evaluation carried out to calculate the optical receiver sensitivity to verify the comparison between the two systems. The original numerical results show that DiPPM VLC system provides a better sensitivity than a DPPM VLC system at a selected BER of 10-9 when referred to the same preamplifier at wavelength of 650 nm and based on the equivalent input noise current generated by the optical front end receiver. The results show that the predicted sensitivity for DPPM is greater than that of DPPM by about 1 dBm when both systems operating at 100 Mbps and 1 Gbps. Also, it is show that the receiver sensitivity is increased when the ISI is limited. Experimentally, a complete indoor VLC system has been designed and implemented using Quartus II 11.1 software for generating VHDL codes and using FPGA development board (Cyclone IV GX) as main interface real-time transmission unit in this system. The white LEDs chip based transmitter and optical receiver have been constructed and tested. The measurements are performed by using LED white light as an optical transmitter faced to photodiode optical receiver on desk. Due to the LED bandwidth limitation the achieved operating data rate, using high speed LED driver, is 5.5 Mbps at BER of 10-7. The original results for the measurements determined that the average photodiode current produced by using DiPPM and DPPM optical receivers are 8.50 μA and 10.22 μA, respectively. And this in turn indicates that the DiPPM receiver can give a better sensitivity of -17.24 dBm while compared to the DPPM receiver which gives is -16.44 dBm. The original practical results proved the simulation and theoretical results where higher performance is achieved when a DiPPM scheme is used compared to DPPM scheme over an indoor VLC system

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Optical wireless data transfer for rotor detection and diagnostics

    Get PDF
    A special application of optical wireless data transfer, namely on-line monitoring and diagnostic of rotors in turbines and engines, has been considered in this thesis. In this application, to maintain line of sight, i.e. data transfer, between a sensor placed on a rotating component inside the turbine and a monitoring point placed in a fixed position outside the turbine, a periodic fast fading channel is generated, which gives the transceivers more flexibility regarding their mounting location. The communication in such a channel is affected by the intermittency and variation of the signal power, which produces a unique channel condition that influences the performance of the optical transceiver. To investigate the channel condition and the error rate of the periodic fast fading channel with signal fluctuation, a model is developed to simulate the optical channel by considering the variation of signal power as a result of the change in the relative position of the photodiode with respect to the Lambertian radiation pattern of the LED, in a simplified linear geometry. The error rate is estimated using the Saddlepoint approximation on a specific threshold strategy. The results show that the channel can afford the sensor data transmission and the performance can be improved by modifying several parameters, such as geometrical distance, transmitter power and load resistor. Compared to a normal channel, a higher load resistor on the photodiode front end has the advantage of decreasing the noise level and increasing the data capacity in the fast fading channel. The analysis of the automatic gain control amplifier indicates that a higher load resistor needs a lower loop gain and from the model of the Transimpedance amplifier (TIA), the bandwidth extension from the amplifier is more significant for a higher resistor. In addition to the theoretical model, an experimental setup is built to emulate the channel in practice. The degree of similarity between the experimental setup and the theoretical model of the channel is estimated from the comparison of the generated communication windows. Since it has been found that differences exist in the duration of the communication window and the variation of the signal power, scaling factors to ensure their compatibility have been derived. Transceiver hardware which implemented the modelled functionality has been developed and a protocol to establish the communication with the required error rate has been proposed. Using the hardware implementation, a detection method for both rising and falling edges of the signal pulses and a threshold strategy have been demonstrated. The device power consumption is also estimated. What is more, the electromagnetic environment of a squirrel cage motor is simulated using the finite element method to investigate the interference and the possibility of providing power to the IR communication devices using power scavenging. In the conclusion, the key findings of the thesis are summarised. A solution is proposed for sensor data transfer using an optical channel for rotor monitoring applications, which involves the design of the IR transceiver, the implementation of the developed protocol and the power consumption estimation
    corecore