9,640 research outputs found

    A conservative extension of first-order logic and its application to theorem proving

    Get PDF
    We define a weak second--order extension of first--order logic. We prove a second--order cut elimination theorem for this logic and use this to prove a conservativity and a realisability result. We give applications to formal program development and theorem proving, in particular, in modeling techniques in formal metatheory

    A New Arithmetically Incomplete First- Order Extension of Gl All Theorems of Which Have Cut Free Proofs

    Get PDF
    Reference [12] introduced a novel formula to formula translation tool (“formulators”) that enables syntactic metatheoretical investigations of first-order modal logics, bypassing a need to convert them first into Gentzen style logics in order to rely on cut elimination and the subformula property. In fact, the formulator tool, as was already demonstrated in loc. cit., is applicable even to the metatheoretical study of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema _A ! _8xA of the logics M3 and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations. In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complex proofs in [2, 8]).This research was partially supported by NSERC grant No. 8250

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    Theories for TC0 and Other Small Complexity Classes

    Full text link
    We present a general method for introducing finitely axiomatizable "minimal" two-sorted theories for various subclasses of P (problems solvable in polynomial time). The two sorts are natural numbers and finite sets of natural numbers. The latter are essentially the finite binary strings, which provide a natural domain for defining the functions and sets in small complexity classes. We concentrate on the complexity class TC^0, whose problems are defined by uniform polynomial-size families of bounded-depth Boolean circuits with majority gates. We present an elegant theory VTC^0 in which the provably-total functions are those associated with TC^0, and then prove that VTC^0 is "isomorphic" to a different-looking single-sorted theory introduced by Johannsen and Pollet. The most technical part of the isomorphism proof is defining binary number multiplication in terms a bit-counting function, and showing how to formalize the proofs of its algebraic properties.Comment: 40 pages, Logical Methods in Computer Scienc

    Conversion of HOL Light proofs into Metamath

    Full text link
    We present an algorithm for converting proofs from the OpenTheory interchange format, which can be translated to and from any of the HOL family of proof languages (HOL4, HOL Light, ProofPower, and Isabelle), into the ZFC-based Metamath language. This task is divided into two steps: the translation of an OpenTheory proof into a Metamath HOL formalization, hol.mm\mathtt{\text{hol.mm}}, followed by the embedding of the HOL formalization into the main ZFC foundations of the main Metamath library, set.mm\mathtt{\text{set.mm}}. This process provides a means to link the simplicity of the Metamath foundations to the intense automation efforts which have borne fruit in HOL Light, allowing the production of complete Metamath proofs of theorems in HOL Light, while also proving that HOL Light is consistent, relative to Metamath's ZFC axiomatization.Comment: 14 pages, 2 figures, accepted to Journal of Formalized Reasonin

    On the alleged simplicity of impure proof

    Get PDF
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and proofs. Mathematicians have paid little attention to specifying such distance measures precisely because in practice certain methods of proof have seemed self- evidently impure by design: think for instance of analytic geometry and analytic number theory. By contrast, mathematicians have paid considerable attention to whether such impurities are a good thing or to be avoided, and some have claimed that they are valuable because generally impure proofs are simpler than pure proofs. This article is an investigation of this claim, formulated more precisely by proof- theoretic means. After assembling evidence from proof theory that may be thought to support this claim, we will argue that on the contrary this evidence does not support the claim

    On Free Completely Iterative Algebras

    Get PDF
    For every finitary set functor F we demonstrate that free algebras carry a canonical partial order. In case F is bicontinuous, we prove that the cpo obtained as the conservative completion of the free algebra is the free completely iterative algebra. Moreover, the algebra structure of the latter is the unique continuous extension of the algebra structure of the free algebra. For general finitary functors the free algebra and the free completely iterative algebra are proved to be posets sharing the same conservative completion. And for every recursive equation in the free completely iterative algebra the solution is obtained as the join of an ?-chain of approximate solutions in the free algebra

    Conservativity of embeddings in the lambda Pi calculus modulo rewriting (long version)

    Get PDF
    The lambda Pi calculus can be extended with rewrite rules to embed any functional pure type system. In this paper, we show that the embedding is conservative by proving a relative form of normalization, thus justifying the use of the lambda Pi calculus modulo rewriting as a logical framework for logics based on pure type systems. This result was previously only proved under the condition that the target system is normalizing. Our approach does not depend on this condition and therefore also works when the source system is not normalizing.Comment: Long version of TLCA 2015 pape
    • 

    corecore