10,089 research outputs found

    PI-BA Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization

    Full text link
    Bundle adjustment (BA) is a fundamental optimization technique used in many crucial applications, including 3D scene reconstruction, robotic localization, camera calibration, autonomous driving, space exploration, street view map generation etc. Essentially, BA is a joint non-linear optimization problem, and one which can consume a significant amount of time and power, especially for large optimization problems. Previous approaches of optimizing BA performance heavily rely on parallel processing or distributed computing, which trade higher power consumption for higher performance. In this paper we propose {\pi}-BA, the first hardware-software co-designed BA engine on an embedded FPGA-SoC that exploits custom hardware for higher performance and power efficiency. Specifically, based on our key observation that not all points appear on all images in a BA problem, we designed and implemented a Co-Observation Optimization technique to accelerate BA operations with optimized usage of memory and computation resources. Experimental results confirm that {\pi}-BA outperforms the existing software implementations in terms of performance and power consumption.Comment: in Proceedings of IEEE FCCM 201

    RadarSLAM: Radar based Large-Scale SLAM in All Weathers

    Full text link
    Numerous Simultaneous Localization and Mapping (SLAM) algorithms have been presented in last decade using different sensor modalities. However, robust SLAM in extreme weather conditions is still an open research problem. In this paper, RadarSLAM, a full radar based graph SLAM system, is proposed for reliable localization and mapping in large-scale environments. It is composed of pose tracking, local mapping, loop closure detection and pose graph optimization, enhanced by novel feature matching and probabilistic point cloud generation on radar images. Extensive experiments are conducted on a public radar dataset and several self-collected radar sequences, demonstrating the state-of-the-art reliability and localization accuracy in various adverse weather conditions, such as dark night, dense fog and heavy snowfall

    Scalable Estimation of Precision Maps in a MapReduce Framework

    Full text link
    This paper presents a large-scale strip adjustment method for LiDAR mobile mapping data, yielding highly precise maps. It uses several concepts to achieve scalability. First, an efficient graph-based pre-segmentation is used, which directly operates on LiDAR scan strip data, rather than on point clouds. Second, observation equations are obtained from a dense matching, which is formulated in terms of an estimation of a latent map. As a result of this formulation, the number of observation equations is not quadratic, but rather linear in the number of scan strips. Third, the dynamic Bayes network, which results from all observation and condition equations, is partitioned into two sub-networks. Consequently, the estimation matrices for all position and orientation corrections are linear instead of quadratic in the number of unknowns and can be solved very efficiently using an alternating least squares approach. It is shown how this approach can be mapped to a standard key/value MapReduce implementation, where each of the processing nodes operates independently on small chunks of data, leading to essentially linear scalability. Results are demonstrated for a dataset of one billion measured LiDAR points and 278,000 unknowns, leading to maps with a precision of a few millimeters.Comment: ACM SIGSPATIAL'16, October 31-November 03, 2016, Burlingame, CA, US
    • …
    corecore