2,039 research outputs found

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog

    Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database

    Get PDF
    The accurate prediction of solubility of drugs is still problematic. It was thought for a long time that shortfalls had been due the lack of high-quality solubility data from the chemical space of drugs. This study considers the quality of solubility data, particularly of ionizable drugs. A database is described, comprising 6355 entries of intrinsic solubility for 3014 different molecules, drawing on 1325 citations. In an earlier publication, many factors affecting the quality of the measurement had been discussed, and suggestions were offered to improve ways of extracting more reliable information from legacy data. Many of the suggestions have been implemented in this study. By correcting solubility for ionization (i.e., deriving intrinsic solubility, S0) and by normalizing temperature (by transforming measurements performed in the range 10-50 °C to 25 °C), it can now be estimated that the average interlaboratory reproducibility is 0.17 log unit. Empirical methods to predict solubility at best have hovered around the root mean square error (RMSE) of 0.6 log unit. Three prediction methods are compared here: (a) Yalkowsky’s general solubility equation (GSE), (b) Abraham solvation equation (ABSOLV), and (c) Random Forest regression (RFR) statistical machine learning. The latter two methods were trained using the new database. The RFR method outperforms the other two models, as anticipated. However, the ability to predict the solubility of drugs to the level of the quality of data is still out of reach. The data quality is not the limiting factor in prediction. The statistical machine learning methodologies are probably up to the task. Possibly what’s missing are solubility data from a few sparsely-covered chemical space of drugs (particularly of research compounds). Also, new descriptors which can better differentiate the factors affecting solubility between molecules could be critical for narrowing the gap between the accuracy of the prediction models and that of the experimental data

    Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Hansen Solubility Parameters Based on 1D and 2D Molecular Descriptors Computed from SMILES String

    Full text link
    A new method of Hansen solubility parameters (HSPs) prediction was developed by combining the multivariate adaptive regression splines (MARSplines) methodology with a simple multivariable regression involving 1D and 2D PaDEL molecular descriptors. In order to adopt the MARSplines approach to QSPR/QSAR problems, several optimization procedures were proposed and tested. The effectiveness of the obtained models was checked via standard QSPR/QSAR internal validation procedures provided by the QSARINS software and by predicting the solubility classification of polymers and drug-like solid solutes in collections of solvents. By utilizing information derived only from SMILES strings, the obtained models allow for computing all of the three Hansen solubility parameters including dispersion, polarization, and hydrogen bonding. Although several descriptors are required for proper parameters estimation, the proposed procedure is simple and straightforward and does not require a molecular geometry optimization. The obtained HSP values are highly correlated with experimental data, and their application for solving solubility problems leads to essentially the same quality as for the original parameters. Based on provided models, it is possible to characterize any solvent and liquid solute for which HSP data are unavailable

    A New Model for Predicting Outbreaks of West Nile Virus

    Get PDF

    Tuning in to How Neurons Distinguish between Stimuli

    Get PDF
    corecore