2,533 research outputs found

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Video streaming in urban vehicular environments: Junction-aware multipath approach

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. In multipath video streaming transmission, the selection of the best vehicle for video packet forwarding considering the junction area is a challenging task due to the several diversions in the junction area. The vehicles in the junction area change direction based on the different diversions, which lead to video packet drop. In the existing works, the explicit consideration of different positions in the junction areas has not been considered for forwarding vehicle selection. To address the aforementioned challenges, a Junction-Aware vehicle selection for Multipath Video Streaming (JA-MVS) scheme has been proposed. The JA-MVS scheme considers three different cases in the junction area including the vehicle after the junction, before the junction and inside the junction area, with an evaluation of the vehicle signal strength based on the signal to interference plus noise ratio (SINR), which is based on the multipath data forwarding concept using greedy-based geographic routing. The performance of the proposed scheme is evaluated based on the Packet Loss Ratio (PLR), Structural Similarity Index (SSIM) and End-to-End Delay (E2ED) metrics. The JA-MVS is compared against two baseline schemes, Junction-Based Multipath Source Routing (JMSR) and the Adaptive Multipath geographic routing for Video Transmission (AMVT), in urban Vehicular Ad-Hoc Networks (VANETs)

    OBPF: Opportunistic Beaconless Packet Forwarding Strategy for Vehicular Ad Hoc Networks

    Full text link
    [EN] In a vehicular ad hoc network, the communication links are unsteady due to the rapidly changing topology, high mobility and traffic density in the urban environment. Most of the existing geographical routing protocols rely on the continuous transmission of beacon messages to update the neighbors' presence, leading to network congestion. Source-based approaches have been proven to be inefficient in the inherently unstable network. To this end, we propose an opportunistic beaconless packet forwarding approach based on a modified handshake mechanism for the urban vehicular environment. The protocol acts differently between intersections and at the intersection to find the next forwarder node toward the destination. The modified handshake mechanism contains link quality, forward progress and directional greedy metrics to determine the best relay node in the network. After designing the protocol, we compared its performance with existing routing protocols. The simulation results show the superior performance of the proposed protocol in terms of packet delay and data delivery ratio in realistic wireless channel conditions.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research. The research is supported by Ministry of Education Malaysia (MOE) and conducted in collaboration with Research Management Center (RMC) at Universiti Teknologi Malaysia (UTM) under VOT NUMBER: QJ130000.2528.06H00.Qureshi, KN.; Abdullah, AH.; Lloret, J.; Altameem, A. (2016). OBPF: Opportunistic Beaconless Packet Forwarding Strategy for Vehicular Ad Hoc Networks. KSII Transactions on Internet and Information Systems. 10(5):2144-2165. https://doi.org/10.3837/tiis.2016.05.011S2144216510

    Multi-metric Geographic Routing for Vehicular Ad hoc Networks

    Get PDF
    Maintaining durable connectivity during data forwarding in Vehicular Ad hoc Networks has witnessed significant attention in the past few decades with the aim of supporting most modern applications of Intelligent Transportation Systems (ITS). Various techniques for next hop vehicle selection have been suggested in the literature. Most of these techniques are based on selection of next hop vehicles from fixed forwarding region with two or three metrics including speed, distance and direction, and avoid many other parameters of urban environments. In this context, this paper proposes a Multi-metric Geographic Routing (M-GEDIR) technique for next hop selection. It selects next hop vehicles from dynamic forwarding regions, and considers major parameters of urban environments including, received signal strength, future position of vehicles, and critical area vehicles at the border of transmission range, apart from speed, distance and direction. The performance of M-GEDIR is evaluated carrying out simulations on realistic vehicular traffic environments. In the comparative performance evaluation, analysis of results highlight the benefit of the proposed geographic routing as compared to the state-of-the-art routing protocols

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Orion Routing Protocol for Delay-Tolerant Networks

    Full text link
    In this paper, we address the problem of efficient routing in delay tolerant network. We propose a new routing protocol dubbed as ORION. In ORION, only a single copy of a data packet is kept in the network and transmitted, contact by contact, towards the destination. The aim of the ORION routing protocol is twofold: on one hand, it enhances the delivery ratio in networks where an end-to-end path does not necessarily exist, and on the other hand, it minimizes the routing delay and the network overhead to achieve better performance. In ORION, nodes are aware of their neighborhood by the mean of actual and statistical estimation of new contacts. ORION makes use of autoregressive moving average (ARMA) stochastic processes for best contact prediction and geographical coordinates for optimal greedy data packet forwarding. Simulation results have demonstrated that ORION outperforms other existing DTN routing protocols such as PRoPHET in terms of end-to-end delay, packet delivery ratio, hop count and first packet arrival

    Geographical Forwarding Methods in Vehicular Ad hoc Networks

    Get PDF
    Vehicular ad hoc networks are new and emerging technology and special class of mobile ad hoc networks that provide wireless communication between vehicles without any fixed infrastructure. Geographical routing has appeared as one of the most scalable and competent routing schemes for vehicular networks. A number of strategies have been proposed for forwarding the packets in geographical direction of the destination, where information of direct neighbors is gained through navigational services. Due to dynamically changing topologies and high mobility neighbor information become outdated. To address these common issues in network different types of forwarding strategies have been proposed. In this review paper, we concentrate on beaconless forwarding methods and their forwarding methods in detail

    Beaconless Packet Forwarding Approach for Vehicular Urban Environment

    Full text link
    Existing wireless technologies provide communication and information services to all fields of life. The one of the emerging and popular field is vehicular ad hoc networks, with its unique characteristics and highly mobile environment. Different types of routing protocols have been proposed to address the routing issues in network and one of the most efficient types is geographical routing. In this type of protocols, the beacon messages are using to update the node locations and positions. However, these protoocls have been suffered with high channel congestion issue in the network. To this end, we propose a beaconless packet forwarding strategy based on modified handshake messages mechanism. The protocol uses some realistic metrics to select the next forwarder node such as forward progresss and link quality. The protocol performance is evaluated with existing beacon and beaconless geographical routing protocols. The simulation results showed the better performance of the proposed protocol in terms of packet delay and data delivery ratio in realistic wireless channel conditions

    Beaconless Packet Forwarding Approach for Vehicular Urban Environment

    Get PDF
    Existing wireless technologies provide communication and information services to all fields of life. The one of the emerging and popular field is vehicular ad hoc networks, with its unique characteristics and highly mobile environment. Different types of routing protocols have been proposed to address the routing issues in network and one of the most efficient types is geographical routing. In this type of protocols, the beacon messages are using to update the node locations and positions. However, these protoocls have been suffered with high channel congestion issue in the network. To this end, we propose a beaconless packet forwarding strategy based on modified handshake messages mechanism. The protocol uses some realistic metrics to select the next forwarder node such as forward progresss and link quality. The protocol performance is evaluated with existing beacon and beaconless geographical routing protocols. The simulation results showed the better performance of the proposed protocol in terms of packet delay and data delivery ratio in realistic wireless channel conditions
    corecore