1,114 research outputs found

    The Grand Challenges and Myths of Neural-Symbolic Computation

    Get PDF
    The construction of computational cognitive models integrating the connectionist and symbolic paradigms of artificial intelligence is a standing research issue in the field. The combination of logic-based inference and connectionist learning systems may lead to the construction of semantically sound computational cognitive models in artificial intelligence, computer and cognitive sciences. Over the last decades, results regarding the computation and learning of classical reasoning within neural networks have been promising. Nonetheless, there still remains much do be done. Artificial intelligence, cognitive and computer science are strongly based on several non-classical reasoning formalisms, methodologies and logics. In knowledge representation, distributed systems, hardware design, theorem proving, systems specification and verification classical and non-classical logics have had a great impact on theory and real-world applications. Several challenges for neural-symbolic computation are pointed out, in particular for classical and non-classical computation in connectionist systems. We also analyse myths about neural-symbolic computation and shed new light on them considering recent research advances

    Neurons and Symbols: A Manifesto

    Get PDF
    We discuss the purpose of neural-symbolic integration including its principles, mechanisms and applications. We outline a cognitive computational model for neural-symbolic integration, position the model in the broader context of multi-agent systems, machine learning and automated reasoning, and list some of the challenges for the area of neural-symbolic computation to achieve the promise of effective integration of robust learning and expressive reasoning under uncertainty

    Agent-Based Models and Simulations in Economics and Social Sciences: from conceptual exploration to distinct ways of experimenting

    Get PDF
    Now that complex Agent-Based Models and computer simulations spread over economics and social sciences - as in most sciences of complex systems -, epistemological puzzles (re)emerge. We introduce new epistemological tools so as to show to what precise extent each author is right when he focuses on some empirical, instrumental or conceptual significance of his model or simulation. By distinguishing between models and simulations, between types of models, between types of computer simulations and between types of empiricity, section 2 gives conceptual tools to explain the rationale of the diverse epistemological positions presented in section 1. Finally, we claim that a careful attention to the real multiplicity of denotational powers of symbols at stake and then to the implicit routes of references operated by models and computer simulations is necessary to determine, in each case, the proper epistemic status and credibility of a given model and/or simulation

    From Implausible Artificial Neurons to Idealized Cognitive Models: Rebooting Philosophy of Artificial Intelligence

    Get PDF
    There is a vast literature within philosophy of mind that focuses on artificial intelligence, but hardly mentions methodological questions. There is also a growing body of work in philosophy of science about modeling methodology that hardly mentions examples from cognitive science. Here these discussions are connected. Insights developed in the philosophy of science literature about the importance of idealization provide a way of understanding the neural implausibility of connectionist networks. Insights from neurocognitive science illuminate how relevant similarities between models and targets are picked out, how modeling inferences are justified, and the metaphysical status of models

    Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning

    Get PDF
    Current advances in Artificial Intelligence and machine learning in general, and deep learning in particular have reached unprecedented impact not only across research communities, but also over popular media channels. However, concerns about interpretability and accountability of AI have been raised by influential thinkers. In spite of the recent impact of AI, several works have identified the need for principled knowledge representation and reasoning mechanisms integrated with deep learning-based systems to provide sound and explainable models for such systems. Neural-symbolic computing aims at integrating, as foreseen by Valiant, two most fundamental cognitive abilities: the ability to learn from the environment, and the ability to reason from what has been learned. Neural-symbolic computing has been an active topic of research for many years, reconciling the advantages of robust learning in neural networks and reasoning and interpretability of symbolic representation. In this paper, we survey recent accomplishments of neural-symbolic computing as a principled methodology for integrated machine learning and reasoning. We illustrate the effectiveness of the approach by outlining the main characteristics of the methodology: principled integration of neural learning with symbolic knowledge representation and reasoning allowing for the construction of explainable AI systems. The insights provided by neural-symbolic computing shed new light on the increasingly prominent need for interpretable and accountable AI systems
    • …
    corecore