3,701 research outputs found

    Training neural networks to encode symbols enables combinatorial generalization

    Get PDF
    Combinatorial generalization - the ability to understand and produce novel combinations of already familiar elements - is considered to be a core capacity of the human mind and a major challenge to neural network models. A significant body of research suggests that conventional neural networks can't solve this problem unless they are endowed with mechanisms specifically engineered for the purpose of representing symbols. In this paper we introduce a novel way of representing symbolic structures in connectionist terms - the vectors approach to representing symbols (VARS), which allows training standard neural architectures to encode symbolic knowledge explicitly at their output layers. In two simulations, we show that neural networks not only can learn to produce VARS representations, but in doing so they achieve combinatorial generalization in their symbolic and non-symbolic output. This adds to other recent work that has shown improved combinatorial generalization under specific training conditions, and raises the question of whether specific mechanisms or training routines are needed to support symbolic processing

    The Latent Relation Mapping Engine: Algorithm and Experiments

    Full text link
    Many AI researchers and cognitive scientists have argued that analogy is the core of cognition. The most influential work on computational modeling of analogy-making is Structure Mapping Theory (SMT) and its implementation in the Structure Mapping Engine (SME). A limitation of SME is the requirement for complex hand-coded representations. We introduce the Latent Relation Mapping Engine (LRME), which combines ideas from SME and Latent Relational Analysis (LRA) in order to remove the requirement for hand-coded representations. LRME builds analogical mappings between lists of words, using a large corpus of raw text to automatically discover the semantic relations among the words. We evaluate LRME on a set of twenty analogical mapping problems, ten based on scientific analogies and ten based on common metaphors. LRME achieves human-level performance on the twenty problems. We compare LRME with a variety of alternative approaches and find that they are not able to reach the same level of performance.Comment: related work available at http://purl.org/peter.turney

    A Comparative Study of the Application of Different Learning Techniques to Natural Language Interfaces

    Full text link
    In this paper we present first results from a comparative study. Its aim is to test the feasibility of different inductive learning techniques to perform the automatic acquisition of linguistic knowledge within a natural language database interface. In our interface architecture the machine learning module replaces an elaborate semantic analysis component. The learning module learns the correct mapping of a user's input to the corresponding database command based on a collection of past input data. We use an existing interface to a production planning and control system as evaluation and compare the results achieved by different instance-based and model-based learning algorithms.Comment: 10 pages, to appear CoNLL9

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    • …
    corecore