10,114 research outputs found

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain

    Learning long-range spatial dependencies with horizontal gated-recurrent units

    Full text link
    Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching -- and sometimes even surpassing -- human accuracy on a variety of visual recognition tasks. Here, however, we show that these neural networks and their recent extensions struggle in recognition tasks where co-dependent visual features must be detected over long spatial ranges. We introduce the horizontal gated-recurrent unit (hGRU) to learn intrinsic horizontal connections -- both within and across feature columns. We demonstrate that a single hGRU layer matches or outperforms all tested feedforward hierarchical baselines including state-of-the-art architectures which have orders of magnitude more free parameters. We further discuss the biological plausibility of the hGRU in comparison to anatomical data from the visual cortex as well as human behavioral data on a classic contour detection task.Comment: Published at NeurIPS 2018 https://papers.nips.cc/paper/7300-learning-long-range-spatial-dependencies-with-horizontal-gated-recurrent-unit

    From receptive profiles to a metric model of V1

    Full text link
    In this work we show how to construct connectivity kernels induced by the receptive profiles of simple cells of the primary visual cortex (V1). These kernels are directly defined by the shape of such profiles: this provides a metric model for the functional architecture of V1, whose global geometry is determined by the reciprocal interactions between local elements. Our construction adapts to any bank of filters chosen to represent a set of receptive profiles, since it does not require any structure on the parameterization of the family. The connectivity kernel that we define carries a geometrical structure consistent with the well-known properties of long-range horizontal connections in V1, and it is compatible with the perceptual rules synthesized by the concept of association field. These characteristics are still present when the kernel is constructed from a bank of filters arising from an unsupervised learning algorithm.Comment: 25 pages, 18 figures. Added acknowledgement

    Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

    Get PDF
    The primate visual system achieves remarkable visual object recognition performance even in brief presentations and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations such as the amount of noise, the number of neural recording sites, and the number trials, and computational limitations such as the complexity of the decoding classifier and the number of classifier training examples. In this work we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.Comment: 35 pages, 12 figures, extends and expands upon arXiv:1301.353

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program
    • …
    corecore